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I. INTRODUCTION 

Spread spectrum modulation was developed as a result of 

the need for secure military communications. Reasons for the 

development and utilization of spread spectrum modulation are 

to provide protection against jamming (either accidental or 

intentional), unauthorized detection, and signal interception 

[1]. The need for robust communications systems with these 

attributes became apparent during World War II [2] because of 

the widespread use of electronic warfare. 

The theoretical and technical foundations of modern 

spread spectrum systems were developed shortly after the war 

by publication of Shannon's information theorem [3] and the 

development of practical hardware correlators. One of the 

first operational frequency-hopped spread spectrum system was 

BLADES [2], which was developed in the mid-1950's for the 

navy. Spread spectrum systems employing direct-sequence or 

time hop modulation were also developed in this time frame. 

Since the 1950's, the major advances in spread spectrum have 

been technological improvements to increase the jamming margin 

and reduce the synchronization time at the receiver. 

In the past ten years, the use of spread spectrum 

communications has become more prevalent, especially in 

military communications. Major uses of spread spectrum 

modulation include jam and interception resistant military 
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communications such as JTIDS (Joint Tactical Information 

Distribution System) or SINCGARS (Single Channel Ground-

Airborne Radio System) [4], provision of accurate location and 

time information through satellites with GPS (Global 

Positioning System), experimental communications systems [5], 

and digital cellular and personal communications networks. 

This dissertation proposes a means of defeating 

Frequency-Hopped (FH) spread spectrum modulation using an 

intercept receiver capable of fast spectral analyses and 

emission classifications. The intercept receiver uses fast 

spectral analyses to detect individual emissions from FH 

signals, while the classification algorithm is used to match 

detected emissions with known FH signals. To illustrate the 

application of the classification algorithm, an example that 

uses hop frequency order statistics to classify emissions 

based on the emission frequency and the hopping spans of FH 

signals is given. No a priori knowledge of the FH signals is 

needed by the classification algorithm or the receiver before 

emissions can be classified. 

Motivation for this research comes from the fact that the 

primary purpose of FH modulation is to provide secure military 

communications, and considerable tactical advantage can be 

gained by rendering the FH communications of one's opponent 

open to intelligence gathering (detection, eavesdropping, or 

position location) or electronic warfare (jamming or other 
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disruption). A side benefit of this research is that it 

provides the ability to determine the vulnerability of one's 

own spread spectrum communications to interception or 

disruption. 

The first step in the interception of FH signals is 

emission detection. Common structures suitable for FH signal 

detection include radiometers [6]-[15], and compressive 

receivers [16][17]. Although compressive receivers have begun 

to receive considerable attention, radiometry remains, by far, 

the most widely discussed method of signal detection. The 

popularity of radiometry for emission detection is due both to 

its ease of implementation in the analog and digital domains, 

and to an abundance of articles analyzing radiometer behavior. 

Current research into the detection of FH signals involve 

the use of sub-optimal detectors for easier implementation 

[9][14], combining the outputs of many narrowband detectors to 

increase the probability of detection [9], and applying the 

method of Wald to energy detection [13]. A comprehensive 

study on the effects of changing integration times and 

detection bandwidths on the probability of detection was 

conducted by Dillard in [12] and later [7]. An interesting 

method developed by Gardner [10] calculates the 

autocorrelation of the Fourier transform of a signal for the 

detection of both emissions and cyclic features such as the 

baud and hop rates of a FH signal. 



www.manaraa.com

4 

Only a radiometric detector was considered for this 

dissertation. A summary of the various detection strategies 

is discussed, and a functional diagram of a digital 

channelized detector presented. The constraints imposed on 

the sampling rate and bin width of the digital detector by the 

hopping span of the FH signal are presented in detail, as well 

as the relationship of the digital detector to analog 

radiometers. Finally, a method for reducing the length of a 

receiver time epoch using parallelism in the receiver 

architecture is presented. 

Correct classification of emissions is the second 

fundamental problem that must be addressed before signal 

interception is possible. FH signal interception is 

complicated by the presence of other signals with both spread 

spectrum and conventional modulation in the same region of the 

spectrum as the signal(s) of interest. The interceptor must 

be able to detect and identify emissions from FH signals 

despite the potential presence of many other signals with 

uncertain spectra. With no a priori knowledge of the FH 

signals, the intercept receiver tries to negate the anti-

intercept property of signals with FH spread spectrum 

modulation, and render them vulnerable to disruption or 

exploitation. 

Many articles in the current literature discuss how to 

calculate data that can be used for emission classification, 
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or use an ad hoc method to exploit a single feature. For 

example, automatic modulation recognition from discrete-time 

samples of an emission [18]-[21] is needed for demodulation of 

FH signals, and can also be used as data for the 

classification algorithm. Other examples of suitable data 

exist ([10] and [22], for example), but the use of such data 

for emission classification has received less attention. 

The classification algorithms developed for this 

dissertation have the capability of using data with any 

probability distribution function to classify detected 

emissions. This compares with ad hoc methods such as [16] 

which uses only time-of-arrival of emissions, has not been 

developed into a probabilistic model, and is therefor 

incapable of incorporating any other data in its 

classification decisions. A classification algorithm using 

data with Gaussian distributions has been presented [23], but 

this algorithm is unable to exploit data which do not have 

gaussian distributions (emission frequency or time-of-arrival, 

for example). An example using emission frequency as a aid to 

emission classification is developed both to demonstrate how 

to generate probabilistic models for data, and to show how 

such data can be used along with data with Gaussian 

distributions to improve classification accuracy. 

Digital processing is becoming increasingly feasible for 

use in receiver design [19][24] due to the development of more 
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to-digital (A/D) converters. As digital processors become 

more powerful and costs fall, more receiver functions can be 

implemented using digital techniques. In essence, this can be 

accomplished by moving the A/D converter function from the 

output toward the antenna until practical technology, 

performance, and cost limits are reached. The trend in 

receiver design has been to introduce digital processing in 

the latter stages of the receiver where the processing 

requirements are not as severe. 

An intercept receiver needs to perform both emission 

detection and classification to operate successfully in 

potentially complicated electromagnetic spectrums. An all-

digital intercept receiver has an advantage over an analog 

receiver in that samples used to compute the spectral density 

(for signal detection) can be easily stored and used again for 

signal feature estimation and emission classification. More 

and more articles in the current literature discuss not only 

the detection of spread spectrum signals, but also the 

estimation of a signal feature using discrete-time samples of 

the received signal. 

The emission sorting and classification algorithms 

developed for this dissertation were designed for use with a 

digital receiver. This was because the level of technology is 

fast approaching the point where digital radio theory and 
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techniques are becoming increasingly feasible in cost. This 

trend is evidenced in current military communication equipment 

design which is leaning toward digital implementation of as 

many signal processing functions as practical. The benefits 

of digital processing (reduced size, power consumption, 

increased flexibility) can be realized in the portions of the 

receiver that replace conventional analog circuitry with 

digital processing. In addition, digital processing allows 

the application of new techniques to intercept receiver design 

by implementing functions that can not be duplicated in an 

analog receiver. 

The proposed receiver uses Fast Fourier Transforms 

(FFT's) of the received signal for emission detection and a 

Baysian emission classification algorithm. The detection 

performance of the digital receiver is compared with 

conventional analog receivers using energy detectors for 

emission detection. The accuracy of the proposed algorithms 

is also examined. Because an analog counterpart to the 

emission classification algorithm does not exist and few 

articles exist in the open press, no comparisons to existing 

emission classifiers can be drawn. 
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II. DEFINITIONS AND TERMINOLOGY 

Frequency-hopped modulation was developed as a means of 

providing secure, low probability of intercept communications 

by pseudo-randomly changing the carrier frequency of a 

narrowband signal. Define the unit pulse function p (y) to be 

p(y) = I ̂ ye[0,1) (i) 
[ 0 otherwise 

Using the unit pulse function, a signal with frequency-

hopped (FH) modulation is expressed as 

s{t)= V A( t) sin( 271 (fo+C;jBp) t+0 {t) ) p (2) 
ictr» V ; 

where k is the dwell index, is the pseudo-random 

spreading code, is the channel spacing, is the hop 

frequency and is the dwell time (the length of time at a 

hop frequency). The amplitude function, A{t) , and the phase 

function, 0(t) , are determined by the transmitted data and the 

type of modulation used to produce the non-hopped bandpass 

signal. The spreading code has positive and negative values, 

so the hop frequencies are evenly distributed around . 

From equation (2), a FH signal is seen to be composed of 

a sequence of gated fixed-frequency signals, , where 
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s^(t) =A{t) sin(2TT; ifo+Cj^gJ t+0 ( t) ) (3) 

The k-th signal is multiplied by the pulse function so 

that it contributes to the FH signal only during the time 

interval kx^^t< (k+Dx^. Each gated fixed-frequency signal 

that forms part of the FH signal is called an emission. 

During the period of time that a single emission is present, 

known as a dwell, the FH signal appears indistinguishable from 

a fixed frequency signal with the hop frequency equal to the 

emission frequency. Only over longer intervals of time does 

the pseudo-random nature of the spread spectrum modulation 

become apparent. When observed for a period of time equal to 

several dwells, a FH signal appears as a passband signal that 

changes carrier frequency or "hops" every seconds. 

The hopping span of a FH signal is defined to be the 

region of the electromagnetic spectrum that contains all the 

emissions that comprise the signal. For purposes of 

definition, let the hopping span be the interval 

where 

fj= min 

(4) 
max {fo+CjjSp} 
k 

The hop bandwidth B^^ of a FH signal is defined to be the 

width of the hopping span, or 
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The hop bandwidth is typically large when compared to the 

bandwidth of the non-hopped signal, since the interference 

rejection gained through the use of spread spectrum modulation 

is proportional to the hopping bandwidth. 

The number of channels is the total number of hop 

frequencies that a FH signal can produce. The number of 

channels is limited by either the transmitter hardware or the 

pseudo-random spreading code. The number of channels can be 

calculated from the hop bandwidth and the channel spacing 

using the relationship 

N^=^+l (6) 

Equations (2)-(6) define the features which uniquely 

identify a FH signal, and can be used to help classify 

detected emissions. Other signal features such as azimuthal 

angle-of-arrival and wave polarization are potentially very 

useful in emission classification, but are not included as 

part of the definition of a FH signal. 

Equation (2) shows that over the period of a dwell, a FH 

signal is indistinguishable from a fixed frequency signal. 

Only over periods of time longer than a dwell does the pseudo­

random behavior introduced by the spread spectrum modulation 
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Figure 1. Frequency versus time display showing how a FH 
signal appears over a period of many dwells 

become apparent. The classification algorithm uses this 

characteristic of FH signals to identify the existence of a FH 

signal. The classification algorithm uses data calculated 

from samples of an emission to group emissions with similar 

features. By continuously analyzing the frequency spectrum 

and classifying detected emissions, the classification 

algorithm can be used to follow a FH signal as it "hops" over 

time. 

Figure 1 is a frequency versus time representation of how 

a FH signal appears to an intercept receiver. The black areas 

represent occupied regions of the spectrum. Each dwell 

appears as a black rectangle, occupying a narrow portion of 
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the spectrum for a period of time. The horizontal axis 

represents time, and is divided into divisions representing 

the length between receiver time epochs. A single spectral 

density estimate is produced and processed by the receiver 

during an epoch. Receiver time epochs occur at integer 

multiples of t=T^ seconds. The vertical axis shows the 

frequency span being analyzed, and is divided into divisions 

representing the granularity of the spectral density estimates 

which, in this example, is equal to the emission bandwidth. 

By inspection, a single FH signal with at least twelve 

possible hop frequencies and a dwell time of four receiver 

time epochs is present. 

The dwells of the FH signal shown in Figure 1 are 

precisely aligned with the time epochs in the intercept 

receiver, although this will not usually be true. If a time 

misalignment exists, it will introduce an uncertainty of one 

epoch in the epoch-of-arrival and divide the emission power 

between frequency bins during any epoch where the FH signal 

changes hop frequency. If the period between time epochs in 

the intercept receiver is shorter than the dwell time, 

misalignment in time is not a serious problem. As an 

illustration, consider the effects of a misalignment with the 

FH signal represented in Figure 1. During the first and last 

epochs an emission is present (in a single frequency bin), the 
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detection performance is degraded because the emission is not 

present during the entire epoch. However, there will be three 

epochs during which the emission is present the entire epoch, 

and the probability of detection is not degraded. 

To provide insight into the difficulty of the task facing 

an intercept receiver, specifications for some existing FH 

systems are examined. Existing systems typically have many 

hops per second since "fast" hopping signals are more 

difficult to jam. Dixon [4] describes a system called 

SINCGARS (Single Channel Ground-Airborne Radio System) which 

has a hopping span of 30-88 MHz, a channel spacing of 25 kHz, 

and a hopping rate of 25,000 hops per second. A SINCGARS 

emission will be present in one of more than 2200 channels for 

only 40 microseconds. To detect these emissions, an enormous 

amount of data must be processed. This huge volume of 

information implies that data reduction will be an important 

factor in a practical intercept receiver. To conserve limited 

system resources, only those channels that are judged most 

likely to contain FH emissions can be examined in detail. 

A more realistic representation of the electromagnetic 

spectrum encountered by an intercept receiver is shown in 

Figure 2. The frequency versus time graph shown is drawn 

closer to scale because the channel spacing of the FH signals 

is very small when compared to the total bandwidth analyzed by 

the receiver. By examining the frequency versus time display. 
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three FH signals, two wideband signals (television signals 

including the audio carriers), and two fixed frequency 

narrowband signals are seen. 

The FH signals shown in the figure can be uniquely 

identified by differences in their dwell times, epochs-of-

arrival, and hop bandwidth. Examination of the spectral 

density display shows that the two wideband signals are 

television signals. Two emissions from the FH signals do not 

appear in the frequency versus time display. The most likely 

reason for this is because the emission frequency falls in the 

region of the spectrum occupied by one of the television 

signals. An intercept receiver must be able to detect and 

correctly classify FH emissions in realistic signal 

environments like that shown in Figure 2. 

The large number and variety of signals present in the 

environment mean that a robust, accurate classification 

algorithm is needed. The best way to develop an algorithm 

that meets this criterion is to first obtain a thorough 

understanding of the theory behind such algorithms. Having 

defined the form of a FH signal and the parameters that 

uniquely characterize it, the theoretical basis of the 

solutions to the detection and classification problems 

developed for this research are addressed in the following 

chapter. 
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III. THEORETICAL BASIS FOR HYPOTHESIS TESTS 

In this chapter, the statistical theory that serves as 

the framework for the signal detection and emission 

classification algorithms is briefly described. It is 

important that the theoretical foundations of the algorithms 

be well understood so the assumptions, strengths, and 

weaknesses of the techniques are apparent. Both the signal 

detection and the emission classification algorithms rely 

heavily on Baysian decision theory, although the specific 

implementations are common enough to have been named. A 

general discussion of Baysian decision theory is presented 

first, followed by specific examples of how this theory is 

applied to obtain practical emission detection and 

classification algorithms. 

A. States of Nature, Data and Data Distributions 

In the most general possible statement about Baysian 

theory, a decision about the current state of nature must be 

made based on observed data drawn from some distribution(s). 

The data distributions are assumed to be dependent on the 

current state of nature, and the decision problem is how best 

to identify the state of nature given the observed data. 
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When the states of nature form a continuous sample space, 

the decision process is called an estimation problem. From 

this branch of statistical theory comes estimation algorithms 

such as maximum likelihood estimators, linear estimators, and 

method of moments estimators. These techniques are well 

understood and information about them can be obtained from a 

variety of sources [26][27], so they are not discussed further 

here. Of more interest to this dissertation is the situation 

that exists when the states of nature form a finite or 

countably infinite set. In this case, the decision process is 

called a hypothesis test or a decision problem [28]. 

The signal detection problem is an example of a 

hypothesis test. The states of nature and possible decisions 

comprise a set with only two elements: signal present, and 

signal absent. When an energy detector is used as the source 

of the observed data, the data have a non-central chi-square 

distribution when the input to the detector consists of a 

signal plus noise, and a chi-square distribution when noise is 

the only input to the detector [6]. 

The emission classification problem also is an example of 

a hypothesis test because the states of nature form a finite 

set. The purpose of the hypothesis test is to identify from 

which FH signal a detected emission comes. There are thus Ng 

states of nature, where Ng is the number of known signals. A 
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practical emission classification algorithm also has to 

account for the small, but finite, probability that a detected 

emission is an artifact of noise, or is the first emission 

from a new, previously inactive signal. The inclusion of 

these details does not add substantially to the understanding 

of how to classify detected emissions, so the classification 

problem considered in the remainder of this dissertation is 

limited to how to select the best match for an emission from a 

known number of signals. 

To classify a detected emission, the receiver assigns to 

it a number, j, corresponding to which FH signal the receiver 

concludes the emission is from. Each decision, d{x) =j, is the 

intercept receiver's best estimate to which FH signal the 

emission is matched based on the observed data, x. The 

observed data for the signal classification problem are 

calculated from samples of detected emissions, and are assumed 

to consist of estimates of signal features such as the 

magnitude, or the azimuthal angle-of-arrival. The probability 

distribution functions of the data are dependent on the method 

used for data collection, so the classification algorithm must 

be able to incorporate data with continuous, discrete and 

degenerate distributions. 
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B. Loss, Risk, and Bayes Risk 

Whether the decision is an estimation problem or a 

hypothesis test, a function which describes the quality of 

each possible decision is needed. The quality can be either 

the "goodness" or the "badness" associated with possible 

decisions. If the function defines the "goodness" of each 

decision, the decision rule that maximizes the average value 

of the function is found. When the function defines the 

"badness" of each possible decision, the decision rule that 

minimizes the function is found. This latter approach is more 

common, and the function which defines the "badness" or "harm" 

associated with each decision is called the loss function. 

The loss function, commonly referred to in engineering as 

the cost, is an attempt to systematically evaluate the 

"badness" or "loss" associated with incorrect decisions. The 

loss function maps the states of nature and possible decisions 

onto the non-negative real numbers. Its only constraint is 

that it must be non-negative. The loss function, L{I,d{x)) , 

is a function of both the possible states of nature, I, and 

the decision rule, d{x) . 

The risk is defined to be the expected value of the loss. 
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and is calculated using the probability distribution 

function^ of the observed data. The notation Ej[*] , denoting 

the expected value conditioned on the random variable, J, is 

used to express the risk as 

When the probability distribution functions of the 

observed data are continuous, equation (7) is equivalent to 

The average loss is calculated by multiplying the loss by 

the probability density function of the data, g(x|<l)^) , and 

then integrating over all possible values of the data. The 

distribution parameters, , are needed to characterize the 

probability distribution of the observed data (for example, 

the mean and variance of a Gaussian distribution). 

In Baysian analysis, the distribution parameters for the 

states of nature are also assumed to have a distribution, 

7t (<})) , called the prior distribution. The Bayes risk, r(ir,d) , 

is the average risk for all states of nature obtained for a 

given prior distribution and decision rule, or 

^ Probability distribution function (pdf) will be used to 
refer to a function that can be either continuous or discrete. 
Probability density function refers to a continuous pdf, while 
probability mass function refers to a discrete pdf. 

R(I, d) =Ej.[L{I,d{x) ) ] (7) 

( 8 )  
X 
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r (Tt, d) =E„ [i?(i, d) ] (9) 

The Bayes rule, d^,(x) , for a prior distribution is that 

decision rule which minimizes the Bayes risk, or 

r (tï, d̂ ) = min{r (k, d)} (10) 

Different Bayes rules can be obtained by changing the 

data distribution, loss function, or prior distribution. The 

probability distribution function of the observed data usually 

models some physical process, and is not, in general, a 

quantity that can be easily changed. Alternately, the loss 

function and prior distribution are parameters which can be 

altered, and are frequently chosen so the resulting Bayes rule 

has a simple form. 

A loss function which is frequently used for hypothesis 

testing is zero when a correct decision is made, and one when 

an incorrect decision is made. The Bayes rule that results 

from use of this loss function generally has a simple form. 

When a zero/one loss function is used, the risk is equivalent 

to the probability of an incorrect decision for a state of 

nature. The Bayes risk is the average probability of an error 

(an incorrect decision) for all possible states of nature. 

Because the Bayes rule minimizes the Bayes risk, it will also 

minimize the average probability of error when this particular 

loss function is used. 



www.manaraa.com

22 

True 

True 

r] 
Figure 3. Probability density functions, decision regions, 

size and power for the signal detection hypothesis 
test 

The signal detection problem, graphically illustrated in 

Figure 3, is used to illustrate the concepts of data, data 

distributions, loss, and risk. The two states of nature are 

signal present (2=1) and signal absent (i=0). The observed 

data are drawn from one of two different probability 

distribution functions, gr(x|(t)°) or gr(x|<t>^) , depending on the 

current state of nature. 

The hypothesis test is equivalent to a test to determine 

the probable distribution of the data, or 
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ffi : X~gr(x|<|>̂ ) 

where ffg is the null hypothesis, is the test hypothesis, (j)^ 

is the distribution parameter(s) for each state of nature, and 

gr(x|<l)^) is the probability density function of the data under 

the i-th hypothesis. 

C. Size and Power of a Hypothesis Test 

The size of the hypothesis test is the expected value of 

the loss under the null hypothesis. When a zero/one loss 

function is used, the size of the hypothesis test is equal to 

the probability of erroneously choosing the test hypothesis. 

In the signal detection problem, the decision rule can be 

shown to be equivalent to a comparison with a threshold, i) . 

The size of the hypothesis test, represented by a in Figure 3, 

is more commonly referred to as the probability of false 

alarm. 

The power of the hypothesis test is one minus the 

expected value of the loss under the test hypothesis. When a 

zero-one loss function is used, the power is equivalent to the 

probability of accepting the test hypothesis when the test 
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hypothesis represents the true state of nature. This is 

graphically depicted by the quantity 1-P in Figure 3. In the 

signal detection problem, the power of the test is more 

commonly called the probability of detection. 

To illustrate these concepts further, the signal 

detection problem based on a single observation of the output 

of an energy detector is examined. In this instance, the 

datum has a chi-square distribution when no signal is present, 

gr(x|(|)°) , and a non-central chi-square distribution, gr(x|<|)̂ ) , 

when a signal is present at the input to the energy detector 

[ 6 ] .  

Let the signal power, when present, be constant. This 

assumption corresponds to selecting a degenerate prior 

distribution. A zero/one loss function is selected as the 

loss function, and each state of nature is assumed to be 

equally likely. The loss in this case is given by 

L(i,d(x))=|5 if d(î)^i (12) 

The risk is given by the average value of the loss. When 

no signal is present the risk equals 

R{0,d) = 0-P[d(x) =0li=0]+1-Ptd(jc) =lli=0] (13) 

Similarly, the risk when a signal is present is given by 



www.manaraa.com

25 

R{l,d)= I'P [d{x) =0 |i=l]+0-P [d(x) =l|i=0] (14) 

Because the prior distributions are degenerate, the Bayes 

risk is equal to the average of equations (13) and (14), or 

r{n,d) = P [ J=0] -(O-P [d(x) =0 |i=0] +1'P [d(x) =1 |i=0] ) 
(15) 

+P[J=1] •(1-P[d(x) =0|i=l] +0-P[d(x) =l|i=l] ) 

The Bayes rule is found by minimizing the Bayes risk. 

After discarding terms which are equal to zero and noting that 

P[J=0] and P[J=1] equal one-half because both states of 

nature are equally likely, the Bayes risk simplifies to 

r(iï,d) =-|-(P[d(x) =l|i=0] +P[d(x) =o|i=l]) (16) 

The Bayes rule minimizes the Bayes risk given by equation 

(16) . In terms of the data, the value of that minimizes the 

Bayes risk needs to be determined to find the Bayes rule for 

the signal detection problem. Let the null hypothesis be 

chosen in the region and the test hypothesis 

chosen in the region {x:ti5x<<»} . The Bayes risk will then 

minimize 

n 
r{n,d) =-|-Jsr(x|<j)°) dx+Ydx (17) 

This function is minimized when ti is selected so that 

gr(tl 14)°) =gr(t^ |(|)i) [26]. Thus, the Bayes rule in this instance is 
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equivalent to the well-known maximum likelihood (ML) criterion 

which is expressed as 

gr(x|<|>°) ^ gr(x|<l)^) (18) 

Equation (18) is a compact method of describing the 

decision rule. The null hypothesis is chosen when the 

probability distribution function under the null hypothesis is 

larger than the probability distribution function under the 

test hypothesis when evaluated using the observed data. If 

the converse is true, the test hypothesis is chosen. This 

decision rule is obtained only for the specific choices of a 

degenerate prior distribution (constant and known amplitude 

signal), zero/one loss function, and equal a priori 

probabilities for the states of nature described above. 

Different choices for any of these will change the location of 

the detection threshold. 

D. Neyman-Pearson Decision Criterion 

The Neyman-Pearson decision criterion is useful when it 

is desirable to both minimize the size and maximize the power 

of a hypothesis test simultaneously. Although desirable, 

quite frequently this can not be done simultaneously. In the 

signal detection problem discussed above, a threshold of zero 
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maximizes the power of the test, but also maximizes the size. 

Larger thresholds reduce not only the size, but also the power 

of the hypothesis test. Clearly some compromise is needed to 

arrive at a satisfactory solution. 

The Neyman-Pearson criterion maximizes the power of the 

hypothesis test while constraining the size of the test to be 

less than or equal to a specified threshold. In the signal 

detection problem, the Neyman-Pearson decision criterion is 

equivalent to maximizing the probability of detection (the 

power) while maintaining the probability of false alarm (the 

size) at or below some preselected threshold. The Neyman-

Pearson criterion will be used in the following chapter to set 

a threshold for the energy detector(s) used for signal 

detection. 

E. Useful Statistical Relationships 

Several useful relationships from statistical theory used 

in the derivation of the classification algorithms are 

mentioned here [27]. First, the law of total probability 

states that if is a collection of mutually exclusive 

and exhaustive events, then for any event A, 

k 
P[A] =T P[A|BjP[Bj] (19) 

i=l 
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Bayes rule (not the function that minimizes the risk 

although it has the same name) gives an extremely important 

relationship between random variables, 

A useful alternate representation of Bayes rule can be 

obtained by applying the law of total probability (19) to the 

denominator of equation (20). The resulting relationship is 

1=1 

Extremely powerful detection and classification 

algorithms can be developed using just these basic statistical 

relationships and Baysian analysis. 
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IV. EMISSION DETECTION 

Detection is the first task the receiver must perform to 

intercept a FH signal. A description of several radiometer 

configurations for the detection FH signals is presented in 

this chapter, and the Neyman-Pearson criterion is used to 

develop signal detection algorithms for the radiometer 

outputs. A functional diagram of a digital detector which 

uses Fast Fourier Transforms (FFT's) to implement the 

radiometer function is proposed. The detection performance of 

the digital receiver is predicted and compared with 

conventional analog radiometric receivers. Constraints on the 

time-bandwidth product imposed by the use of FFT's are also 

examined. Tradeoffs between detection bandwidth and 

integration time for both analog and discrete-time systems are 

examined. 

The intercept receiver is commonly assumed to have a 

general idea of the hopping span, the hop bandwidth, and 

the channel spacing, of the existing FH signals. These 

characteristics of a FH signal can be determined by physical 

examination of existing FH transmitters. Unknown signal 

features that may be of interest include the amplitude and 

phase functions, and the frequency, at any given time, of 

emissions from a FH signal. There may also be other signal 
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features of interest such as the azimuthal angle-of-arrival 

which are not included in the definition of a FH signal. It 

is important that the receiver be able to detect individual 

emissions from a FH signal so estimates of signal features can 

be calculated. 

When the signal to noise ratio is small and the 

modulation structure is uncertain, intercept receivers using 

energy detection, or radiometry, for emission detection are 

both practical and effective [6][7][9]. The probability of 

detection is not dependent on the signal structure or data 

rate, and a single radiometer is relatively inexpensive to 

build. Radiometric receivers compare the energy contained in 

a portion of the spectrum during an observation time to a 

detection threshold. When the energy is above the detection 

threshold, a signal is declared to be present. 

Radiometers used for signal detection belong to one of 

two broad categories: wideband radiometers that integrate 

energy over the time and bandwidth of a frequency-hopped (FH) 

transmission, and multiple narrowband radiometers matched in 

time and bandwidth to individual emissions from the 

transmitter. 

A. Wideband Radiometer 

The first task confronting an intercept receiver is to 
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BPF 

t - T  

Figure 4. Single wideband radiometer integrating over the 
entire hopping bandwidth and a time period much 
greater than a dwell 

determine the presence or absence of a FH signal. One of the 

most basic and effective detectors consists of a single 

radiometer integrating over the duration and hop bandwidth of 

a FH signal, as shown in Figure 4. The received signal r(t) 

is assumed to consist of a frequency-hopped signal, s{t) , plus 

zero-mean, stationary, Gaussian noise, n(t) , with flat single-

sided power spectral density NQ . The detector consists of a 

bandpass filter with center frequency and bandwidth 

The output of the bandpass filter is squared to produce a 

signal proportional to the signal (or noise) power, integrated 

over a period of time Tj>>Tj, and scaled by the factor Z/N^ to 

normalize the output. 

The output, V(t) , of the energy detector is closely 

approximated by a chi-square distribution with degrees 

of freedom when the input consists of noise only, and by a 

non-central chi-square distribution with degrees of 
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freedom and noncentrality parameter X=2EJNQ when the input 

consists of a signal with energy plus noise [6]. Signal 

detection is accomplished by comparing V(fc) to the energy 

detection threshold, ti. If V(t)>'n a signal is assumed to be 

present. Conversely, when V{t)<,x\ the input is assumed to 

consist of noise only. To increase detection performance, the 

outputs of many separate radiometers are sometimes combined. 

In a radiometric receiver, it is not possible to 

simultaneously minimize the size and maximize the power of the 

detection algorithm. In addition, the signal strength at the 

receiver is generally not known in advance, so the receiver 

cannot be optimized for a single amplitude input signal. 

Instead, an energy detection threshold is calculated using the 

Neyman-Pearson criterion so that the radiometer output has a 

known probability of false alarm (the probability of deciding 

that a signal is present when the input to the energy detector 

is noise only). 

The energy detection threshold, ti, is calculated by 

solving the expression for the probability of false alarm 

using the distribution of V(t) when the input consists of 

noise (the chi-squared distribution). The chi-squared 

distribution is given by [7] 
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where g is the number of degrees of freedom and V{z) is the 

gamma function. When its argument is an integer, the gamma 

function simplifies to V{z) = {z-l) ! . 

The size of the hypothesis test, a, is graphically 

depicted in Figure 3. When applied to signal detection, the 

size is more frequently called the probability of false alarm, 

Pjrg. A probability of false alarm is selected, and the energy 

detection threshold is calculated by solving the expression 

for the probability of false alarm 

The probability of detection is the likelihood of 

correctly determining the presence of a signal when the input 

to the detector consists of a signal plus noise. The 

probability of detection is governed by the noncentral chi-

square distribution when the input consists of a sinewave and 

additive noise, and also closely models the detection 

performance for modulated sinusoids. The derivation of the 

probability of detection is discussed in detail in the 

literature [6][12][7]. To summarize the results, the 

probability of detection is governed by [7] 

2TdBdp(T̂ )̂ 
(23) 
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dv (24) 

n \ 

where X,(*) is the modified Bessel function of the first kind 

of order y, and X is the signal-to-noise ratio at the energy 

detector. Equations (23) and (24) define the operating 

characteristics of an analog radiometric receiver, and will be 

used as a basis for comparison with signal detection using a 

periodogram. 

A useful approximation that is valid when the time-

bandwidth product of the radiometer is large or 

greater) is that V(t) has a Gaussian distribution with mean 

Hy=A+2TjfSjj and variance ol=éX+4:T^^ [7]. This approximation is 

easily applied to the noise only case by setting A,=0 

(corresponding to zero signal energy). When this 

approximation is valid, calculations of the probability of 

detection can be made from standard tables of the area under 

the normal curve. 

For example, SINCGARS has a hopping span of 30-88 MHz and 

a channel spacing of 25 kHz. To detect a SINCGARS 

transmission, a wideband radiometer would analyze a B^=55 MHz 

bandwidth. The integration time can be as high as several 

seconds if signal with extremely low signal-to-noise ratios 

are of interest [9], because the probability of detection 



www.manaraa.com

35 

increases with longer integration times. The period of 

integration is limited only by the duration of the FH signal, 

and by the complexities introduced by the time-variant nature 

of the RF spectrum. 

One drawback of the wideband radiometer is that it is 

only able to determine the presence of a signal, and is unable 

to determine whether the signal is frequency-hopped. The 

wideband radiometer is also inherently unable to measure or 

exploit such signal features as dwell or time-of-arrival of 

the emissions. The only useful information that can be 

obtained from a wideband radiometer is thus the mean energy of 

any signal within the frequency span being analyzed. 

Because the wideband radiometer measures the total energy 

over a large time-bandwidth product, another drawback is that 

its operation is complicated when multiple signals are present 

or when the probability distribution function of the noise is 

not known. The noise may not only be non-white, but also not 

stationary. A complex signal environment is likely to mask a 

FH signal, since the energy of the FH signal may be 

considerably less than the total energy of the other signals 

present. 

B. Channelized Receiver 

Channelized receivers are a compromise between 
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performance and complexity. A channelized receiver analyzes 

the frequency spectrum using many radiometers, and is useful 

when the spreading code is of interest, or the signal 

environment is complex. The channelized receiver shown in 

BPF 

Bandpass 

Filler 

Channel 1 

Channel N 

Channel 2 

Figure 5. Channelized receiver for the detection of 
individual emissions from a FH signal 

Figure 5 uses radiometers each with bandwidth where 

to analyze the hopping span of the FH signal. The 

channelized receiver is less sensitive to the presence of 

narrowband fixed-frequency signals because each radiometer is 

likely to be affected by at most a few fixed frequency 

emissions, and their effects can be compensated for more 

easily when they are considered a few at a time. The 
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integration time of the radiometers in a channelized receiver 

is less than or equal to the dwell time of the fastest FH 

signal. This means that the channelized receiver, unlike a 

receiver which uses a single wideband radiometer for signal 

detection, can discriminate between a FH signal and a fixed-

frequency signal by analyzing the outputs of the energy 

detectors over time. 

When the bin width equals the channel spacing, Njy=N^f and 

the period of integration equals the dwell time, the 

channelized receiver is optimized for emission detection (for 

simplicity, the bandwidth of each emission is assumed to equal 

the channel spacing). This design has been mainly of academic 

interest since the large number of hopping channels makes it 

impractical to build an analog receiver with an energy 

detector on each hopping channel. To implement an optimum 

channelized receiver for a SINCGARS transmission, over 2300 

energy detectors are required. It would be extremely 

difficult and costly to implement this number of narrowband 

filters with the tolerances needed for the energy detectors. 

To reduce the number of energy detectors to a more 

practical level, a common procedure is to set with 

equal to a multiple of so that each radiometer spans 

several channels during a dwell. Although no longer optimal, 

this design represents a reasonable compromise between 
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'detection performance and receiver complexity. 

An analog implementation of the channelized receiver 

shown in Figure 5 requires many narrowband analog filters for 

the radiometers, and cannot be reconfigured for FH signals 

with different hop bandwidths or dwell times. Some of these 

problems can be avoided by replacing the analog radiometers 

with digital processing. A digital channelized receiver does 

not need multiple narrowband analog filters, and can be easily 

reconfigured for different FH signals by changing the sampling 

frequency and the number of samples used in the spectral 

density estimate. 

C. Digital Channelized Receiver 

A block diagram of a direct-conversion receiver with 

digital baseband is shown in Figure 6. The received signal is 

prefiltered to avoid aliasing, frequency shifted into the 

baseband to minimize the sampling rate, and then sampled. 

After sampling, emissions are detected using a periodogram of 

the data. Estimates of signal features are calculated for 

each emission detected by the periodogram. A small delay is 

added to the sampled data before signal feature estimation to 

compensate for the time required to calculate the periodogram. 

This ensures that the same emission detected by the 

periodogram is available to the signal feature estimator. 
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Finally, the signal feature estimates are used to classify 

each detected emission. 

Only the effects of the discrete-time analysis are 

considered here. The effects of amplitude quantization 

introduced by analog-to-digital converters on detection 

performance and subsequent processing are not addressed. Each 

sample of the received signal is assumed to have infinite 

amplitude resolution. The effects of finite amplitude 

resolution are frequently modeled as an additive noise source 

[29], and are not considered here. 

The observation time, A , is the time required to collect 

samples for the periodogram. Subsequent processing of the 

samples is assumed to take less time, so the observation time 

is the factor which determines the length of time between 

epochs. At each receiver epoch, detected emissions from the 

previous epoch are processed while new samples are collected 

and prepared for processing. The exact samples used to 

produce the spectral analysis are available for secondary 

processing by adding digital delay. A data vector is 

calculated from samples of each detected emission. The data 

vector is passed to the classification algorithm which 

identifies which signal produced the emission. 

The received signal is first bandlimited to avoid alias 

distortion after sampling. The detection bandwidth, and 
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Figure 6. Direct-conversion receiver with digital baseband 
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for the detection of emissions from FH signals 

center frequency, f^, of the receiver prefilter are determined 

by the hop bandwidth and hopping span of the FH signal. The 

band-limited signal is then frequency shifted into the 

baseband and sampled. To avoid aliasing, the sampling 

frequency must be greater than or equal to twice the prefilter 

bandwidth, or . 

To produce an bin spectral analysis using a DFT, N=2Nj^ 

samples of the input waveform r'(t) are obtained by sampling 

the input at the sampling rate. During the e-th receiver time 

epoch, which uses data collected in the time interval 

eA!£t<(e+l)A, the discrete Fourier transform of the samples is 

calculated using the relationship 

N-l 

R'(n,e) =5^ r'ie^+nXg) (25) 
n=0 

where r'(t) is the baseband, frequency-shifted equivalent of 

r(t) . There is a simple one-to-one correspondence between 
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signals in the original and frequency-translated spectrums 

given by r'{f) =R{f+f^^-Bj2) , where R{f) and R'{f) are the 

continuous-time Fourier transforms of r(t) and r'(t) 

respectively. 

The DFT calculates the Fourier transform of the samples 

at discrete frequencies given by 

fn=^ n=0,...,N-l (26) 

which directly correspond to the discrete frequencies 

fj=fn+fQ-Bj2 in the original untranslated spectrum. The FFT 

produces a double-sided estimate of the spectral density. 

Positive frequencies correspond to values of n from n=l to 

n=N/2-l, negative frequencies to the range N/2+l^n^N-l, while 

the value associated with n=N/2 corresponds to both f=fj2 

and f= -fg/2. The spectral density estimates at corresponding 

positive and negative frequencies are complex conjugates since 

the samples were taken from a real-valued function. 

This analysis assumes that the samples used to calculate 

the DFT are taken during a period of time less than a dwell, 

and that the FH signal hops only at a receiver epoch. Using 

these assumptions, the spectrum for an epoch will show a 

narrowband signal in noise. Spectral density estimates, 

frequently called periodograms, are calculated from the 
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Fourier transform using the relationship 

P 7 ( n , e ) = A | i ? / ( n , e )  | 2  ( 2 7 )  

Both the bin width and the observation time are 

proportional to the number of samples used in the DFT. As the 

number of samples increases, the bin width decreases and the 

observation time increases. Larger periodograms also increase 

the amount of processing power needed to compute the DFT, 

increase the amount of high-speed delay needed, and reduce the 

ability of the detector to identify fast hoppers. For the 

periodogram to have a bin width equal to the channel spacing 

of the FH signal, a large number of samples need to be 

collected. The observation time could potentially be much 

longer than the dwell time, so the receiver would detect 

multiple emissions from a single FH signal at each epoch. 

Thus, practical concerns seem to indicate that both the 

channelized radiometer and the DFT-based detector must have a 

bin width larger than the channel spacing of the FH signal, 

but for different reasons. 

A major difference between the DFT-based detector of 

Figure 6 and the analog channelized radiometric detector of 

Figure 5 is that is a function of the detector binwidth and 

cannot be chosen arbitrarily. To show this, first note that 

the period of integration in the DFT-based detector is equal 
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to the sampling period multiplied by the number of samples 

used in the DFT, or Tj=jV/fg. The minimum sampling frequency 

required to satisfy Nyquist's criterion and avoid aliasing is 

fg=2N,yB^, or twice the total bandwidth being analyzed. Since 

N=2Nf̂ , the period of integration is seen to be the inverse of 

the detector binwidth. Since Tj=l/Sj when a single DFT is 

used for spectral analysis, the time bandwidth product for 

each bin is unity. 

If additional delay in the receiver is acceptable, the 

time granularity of the receiver can be decreased without a 

corresponding increase in the bin width. This feat is 

accomplished using a parallel implementation of DFT's as shown 

in Figure 7. The parallel implementation trades receiver 

complexity and delay for additional epochs. 

Figure 7. Parallel implementation of DFT's used to decrease the 
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In this example, two DFT's of the input sequence are 
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calculated. The first DFT uses as input the incoming sequence 

delayed by half the number of samples in the DFT. The second 

DFT uses the incoming sequence as input. The net effect is 

that during the observation time, two estimates of the 

spectral density at two different times are produced. Adding 

more fractional delay and calculating more DFT's will increase 

the time resolution of the analyzer proportionally without 

affecting the frequency resolution. The number of stages can 

be increased until a DFT is calculated with each sample taken. 

The distribution of the spectral density estimates given 

by equation (27) needs to be determined for comparison with 

the channelized receiver. To calculate an energy detection 

threshold for the periodogram, the distribution of Pf(n,e) 

needs to be determined for the noise only case so the Neyman-

Pearson criterion can be used. 

Let the variance of r'(t) due to noise be denoted by 

o^=jWoS^. An accurate approximation to the distribution of the 

periodogram in this case [29][30] is that the quantity 

2iy(.n,e) 
.2 (28) 

is chi-square distributed with 2 degrees of freedom. Remember 

that the output of an analog energy detector also has a chi-

square distribution in the noise only case. The distribution 
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of the normalized samples from the periodogram given by 

equation (28) is thus identical to the distribution of V(t) 

from an analog energy detector with a unity time-bandwidth 

product. 

When is substituted into equation (23) , the 

resulting equation becomes 

The lower limit of this equation, 2^/0%, is the detection 

threshold for a normalized periodogram given by (28) . The 

above integral is readily evaluated as 

Note from the above expression that the probability of 

false alarm is dependent only on the variance of the samples 

and not on the number of samples used in the DFT, so the DFT 

is not a consistent estimator. Increasing the number of 

samples used in the DFT will not decrease the probability of 

false alarm. 

By taking the natural logarithm of both sides of equation 

(30) , the decision threshold for a periodogram is found to be 

(29) 

(30) 
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n=-Oa In Pfa (31) 

To arrive at an upper bound for the probability of 

detection, several simplifying assumptions are necessary. A 

first approximation is that each estimate W{n,e) from the 

periodogram is equal to the energy contained only in the 

frequency span {n-l/2) /NXg^ f'< (n+l/2) /NXg during the epoch. 

Using this assumption, W{n,e) can be thought of as an estimate 

of the energy contained in a frequency bin equal in width to 

the spacing of the discrete frequencies of the DPT. This 

assumption is reasonable for a narrowband emission centered on 

one of the discrete frequencies of the DFT given by equation 

(26) . The periodogram should then have approximately a non-

central chi-square distribution with 2 degrees of freedom. 

If the emission frequency is not equal to one of the 

discrete frequencies of the FFT or is not sufficiently 

narrowband, bin spreading will occur. Bin spreading causes 

the signal power to be distributed across several frequency 

bins, and degrades the detection performance of the receiver. 

Estimates of the probability of detection using the above 

assumptions therefore represent an upper bound. 

A useful approximation to the probability of detection 

can be obtained by considering an equivalent spectrum that has 

been created by passing white noise through a shaping filter. 

The spectral density of a signal plus noise can be 
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approximated by shaping white noise with a linear filter with 

gain \Y{n) \^=Eg(.n) /o^, where E^in) is the signal energy in the 

J2-th bin. From linear systems theory, the spectral density of 

the noise after shaping by the linear filter will be changed 

by a factor of |y(zj)|^. The shaped spectrum should also have a 

chi-square distribution. 

The probability of detection using this approximation is 

given by the probability that the shaped spectrum, Wg{n,e) , is 

larger than ti , or 

Pd=P[P//zz,e)>n] (32) 

To arrive at an expression for the probability of 

detection, both sides of the argument of equation (32) are 

scaled to create the expression 

fd=P 
2W^(n,e) ̂  2r\ 

|y(n) \^al |y(j7) \^al 
(33) 

Since IVg(7],e) =|y(;]) and 2W{n,e) /a^ is approximately 

chi-square distributed with two degrees of freedom, the 

quantity 2Wg{n,e) /\Y(n) \^al should also have a chi-square 

distribution with 2 degrees of freedom. By substitution, the 

probability of detection is equivalent to 
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Pd=P[%2(2)> J!L 
a. (a) 

] (34) 

where %2(2) represents a chi-square random variable with two 

degrees of freedom, and =|F(i2,e) |^o^. Equation (34) is 

easily evaluated using the chi-square distribution, and is 

equal to 

(35) 

The variance of the periodogram using the chi-square 

approximation is proportional to the square of the desired 

spectrum. The chi-square approximation is useful because of 

the simplicity of the resulting expression for the probability 

of detection. It can be used to quickly calculate the 

approximate probability of detection without having to 

evaluate the non-central chi-square distribution. As will be 

shown in Figure 8, this approximation is quite reasonable for 

signal-to-noise ratios greater than 0 decibels. 

A Monte-Carlo simulation was created to examine how 

accurately the non-central chi-square distribution and the 

chi-square distribution model the detection performance 

obtained from a DPT. The simulated signal environment 

consisted of eight sinusoids with uniformly increasing 
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amplitudes and random phases in zero-mean unity-variance 

(Oa=l) Gaussian noise. An N=S12 point DFT [31] was used to 

analyze the signal environment with Pf^=10~^, a probability of 

false alarm sufficiently small to ensure that few system 

resources are utilized analyzing spurious signals. The energy 

detection threshold was calculated using equation (31). The 

program DETECT.FOR, included in this dissertation as Appendix 

A, was created to experimentally determine the probability of 

detection. The probability of detection predicted by the non-

central chi-square distribution was calculated using 

NCENT.FOR, which is listed in Appendix B. Finally, the 

probability of detection predicted by the chi-square 

approximation was calculated using equation (35) and a 

computer spreadsheet. 

Figure 8 is a graph of the data obtained using 

DETECT.FOR, NCENT.FOR, and the computer spreadsheet. The non-

central chi-square distribution models the experimental 

probability of detection most closely, but equation (35) is 

also useful at high signal-to-noise rations due to its 

simplicity. 

The fact that the amplitude estimates produced by the 

periodogram have chi-square distributions when only noise is 

present suggests a way to improve the detection performance of 

the receiver. Since the sum of independent chi-square 
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variables also has a chi-square distribution, Np successive 

periodograms can be added together to form an estimate that is 

also chi-square distributed with 2Np degrees of freedom. The 

application of this to spectral estimation is frequently 

referred to as Bartlett's procedure, and it reduces the 

variance of the periodogram by a factor of Np [29]. 

The detection performance of the receiver is important 

because a compromise between detection performance and the 

false alarm rate must be reached. If the probability of false 
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alarm is too low, a large amount of processing power will be 

wasted analyzing bins that do not contain signals. 

Conversely, fewer emissions from a FH signal will be observed 

if the probability of false alarm is set too high, because the 

probability of detection will be reduced. When fewer 

emissions are observed, it is harder for the receiver to 

determine the number of FH signals present. 

The decisions as to what level of false alarm is 

acceptable and what minimum probability of detection is 

required before the receiver begins to track a signal can only 

be talked about in generalities, since these decisions are 

determined primarily by economics. If a low level of false 

alarm is desirable and a large majority of emissions must be 

detected, the minimum signal-to-noise ratio is on the order of 

10 decibels. Signal interception of the type proposed here is 

not for signals employing spread spectrum modulation to 

provide low probability of intercept communications. These 

signals also will frequently use low data rates and power to 

make detection difficult. The method of signal interception 

proposed here would best apply to signals employing FH 

modulation primarily for jam resistant communications. 
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V. EMISSION CLASSIFICATION ALGORITHM 

While knowledge that a FH signal is present can be 

important information by itself, exploitation usually requires 

that some signal feature or features be calculated by the 

receiver. In this dissertation, interception refers to both 

the detection and correct classification of the emissions that 

comprise a FH signal. In this chapter, a maximum likelihood 

classification algorithm capable of making decisions based on 

data with discrete, continuous, and degenerate probability 

distribution functions is developed. This task is complicated 

by the presence of other signals within the hopping span that 

may have spread spectrum or conventional modulation. The 

classification algorithm matches emissions with FH signals by 

calculating data from emissions (azimuthal angle-of-arrival, 

as an example) and finding the FH signal most likely to have 

produced the emission. 

Each signal feature describes some aspect of the FH 

signal that sets it apart from other signals. When the signal 

environment consists of a single FH signal, signal features 

can be used by the receiver to identify FH emissions in the 

presence of spurious emissions. In a more complex 

environment, use of signal features allows the receiver to 

identify emissions from a single FH signal in the presence of 

fixed frequency or even other FH signals. 
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To ensure accurate classifications under a wide variety 

of conditions, the receiver should be capable of producing 

high-quality data dependent on many different signal features. 

However, cost and computational constraints dictate that only 

a limited number of data be calculated. As a compromise, the 

classification algorithm should be flexible enough to exploit 

all readily available information about a FH signal regardless 

of the data quality or the form of its probability 

distribution function. For example, if azimuthal angle-of-

arrival and modulation type are the data calculated by the 

receiver, the classification algorithm makes decisions using 

data with both continuous (angle-of-arrival) and discrete 

(modulation type) distributions. 

This dissertation considers how emission classifications 

should be made based on data from dissimilar probability 

functions using Baysian decision theory. Each datum used by 

the classification algorithm consists of an estimate of a 

signal characteristic such as the signal amplitude, and is 

calculated from samples of a detected emission. Each datum 

used by the classification algorithm is assumed to be a single 

sample from a random process with a known probability 

distribution function. Data calculated from different 

emissions from the same FH signal should therefore be similar, 

but not identical. 

At each epoch, the receiver first calculates data for the 
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classification algorithm from samples of each detected 

emission. Next, the data are used by the classification 

algorithm to match each detected emission with a known FH 

signal by finding the signal with the features that most 

likely produced the data. Classification errors occur when FH 

signals have similar or nearly identical features. As the 

number of features estimated by the receiver, N^, increases, 

classification errors become less frequent. 

Having defined the signal environment for all time in the 

previous chapter, the epoch dependency of the periodogram and 

the data will be suppressed for the discussion of the sorting 

algorithms. This is done both to make an already cumbersome 

notation more manageable, and because only a memoryless sorter 

is considered—emission classifications are not dependent on 

data from previous epochs. To continue to explicitly show the 

epoch dependency is needlessly confusing. 

A. Signal Environment and Terminology 

The signal environment for the classification algorithm 

is assumed to consist of Ng FH signals in additive white 

Gaussian noise. Because multiple FH signals exist, a method 

of distinguishing between emissions and parameters from 

different FH signals is needed. Let the superscript "i" used 
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with the quantities defined by equations (2)-(6) identify 

parameters and emissions from the i-th FH signal. For 

example, denotes the hop bandwidth of the i-th FH signal. 

Using this notation, the received signal at the prefilter 

output, r(t), is given by 

r(t) =i2(t)+y^ s^(t) (36) 
i=l 

The observation time of the receiver is assumed to be 

less than the smallest dwell time of all the FH signals, and 

FH signals are assumed to hop only at receiver time epochs. 

The requirement that signals hop only at receiver time epochs 

allows a discussion of the classification algorithm without 

addressing effects created when the emission is not present in 

a bin for the entire epoch. The effects of time misalignment 

can be minimized by postponing decisions for an epoch or 

through the use of receiver structures like that shown in 

Figure 7. 

Using these assumptions, each spectral density estimate 

should show Ng narrowband signals in noise. The 

classification algorithm presented here does not attempt to 

determine the dwell index, k, associated with each emission or 

estimate the hop sequence. Instead, the classification 

problem determines how to estimate the signal index, i, for 



www.manaraa.com

56 

each detected emission. 

Let the receiver be capable of estimating Nf signal 

features, and 2:= ^ be a vector of data calculated 

from samples of a detected emission. Each element of the 

data vector, 2:, is modeled as a sample from a random process 

with known probability distribution function g(x„|<l>m) i where 4>m 

is the distribution parameter for the in-th data probability 

distribution function from the i-th FH signal. The 

distribution parameter vector, contains all 

the parameters needed for the probability functions of the 

data. 

The elements of are assumed to be independent random 

samples from distributions which are parameterized by 

different signal features. The probability of obtaining the 

data vector, Xi from samples of an emission from the i-th 

signal is given by 

Two classification algorithms using Baysian decision 

theory were created for this research. The classification 

algorithms differ only in their cost functions. The first 
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algorithm developed is the maximum likelihood emission 

classification algorithm. In an attempt to correct 

deficiencies in the maximum likelihood classification 

algorithm, the epoch classification algorithm was developed. 

B. Maximum Likelihood Emission Classification 

The well-known maximum likelihood decision criterion [26] 

is to choose the value of j for each emission that maximizes 

P . This algorithm is we 11-understood and frequently 

used for hypothesis testing; however, the assumptions used in 

its derivation are not generally known. The Baysian decision 

theory on which it is based was discussed in chapter III, and 

demonstrated with the derivation of a maximum likelihood 

emission detection algorithm. The assumptions behind the 

maximum likelihood algorithm are now reviewed. 

The first step in deriving a maximum likelihood emission 

classification algorithm is to assume all the prior 

distributions are degenerate. This implies the signal 

features for each observation are constant and known. The 

loss function, a measure of the harm created by incorrect 

decisions, is zero for correct decisions and one for incorrect 

decisions. A final assumption is that the a priori 

probabilities of all of the decisions are equal. Under these 
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assumptions, the Bayes risk is equal to the probability of an 

incorrect emission classification. 

The maximum likelihood algorithm minimizes the 

probability of making an incorrect emission classification 

when all classification errors are considered to have equal 

weight and all decisions are equally likely [26]. The 

procedure for classifying FH emissions using the maximum 

likelihood criterion is thus 1) from samples of each detected 

emission, IV(ii,e)>ti, calculate the data vector, 2C, 2) use 

equation (37) and the probability distribution function for 

each datum to calculate P[2c|ife^] , 3) assign the emission to the 

j-th signal, where P for all i= l ,  2,. 

When the data have similar probability functions, the 

classification process can be simplified by using sufficient 

statistics [27]. As an example, assume the data have 

independent Gaussian distributions with mean and standard 

deviation . Equation (37) is given by 

Simplification of the classification algorithm comes from 

observing that a necessary and sufficient condition for 

P [z|ik^] ̂ P [x|ib^] to occur is that , where is the 

(38) 
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sufficient statistic for data with independent Gaussian 

distributions. The sufficient statistic has the form 

Iff 

m=l 
V < / 

(39) 

Considerable reduction in the computational burden can be 

achieved through the use of sufficient statistics. Repeated 

evaluations of the exponential function were avoided in the 

above example because the sufficient statistics can be 

compared directly. Equation (39) together with the maximum 

likelihood algorithm has been proposed as a method of 

classifying emissions from FH signals by Nicholson, et. al 

[23]. While their article restricts itself to only data with 

Gaussian distributions, this analysis is true for any 

probability distribution function. If the data are not all 

from the same family of distributions, equation (37) can not 

be simplified and it is not possible to simplify the test 

statistics. 

The probability of a classification error from maximum 

likelihood emission classification is tedious to evaluate when 

many signals are present, especially when the data have 

different distributions or there are many FH signals present. 

Let i denote the current state of nature which, in the 

classification problem, is the FH signal that produced a 
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detected emission. The probability of classification error is 

P^=P[d{x)*i] (40) 

This probability of error is bounded by 

P[P[2:|à^] < P[2:|4i-^] ] (41) 

Equation (41) is an upperbound for the probability of 

error because it does not account for the possibility that 

more than one incorrect signal may be indicated by the 

algorithm. If the principal source of error is the presence 

of two FH signals with similar parameters, equation (41) will 

provide a good approximation to the probability of error. 

When three or more FH signals have similar features, the 

approximation will not be as good. 

To provide insight into the strengths and weaknesses of 

the maximum likelihood emission classification algorithm, an 

example of how the maximum likelihood algorithm can be used to 

classify emissions using emission frequency is discussed. The 

example includes the case of both known and unknown signal 

features, and a discussion on the classification accuracy that 

can be expected. 
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C. Classification Using Emission Frequency 

In this section, the algorithm created for classifying 

emissions using emission frequency is described. When hopping 

spans are known or can be estimated, the emission frequency 

becomes a valuable source of information for the 

classification problem. When the hopping spans do not 

overlap, the emission frequency can, by itself, identify which 

FH signal produced an emission. When the hopping spans 

partially overlap, the emission frequency can still be used 

for emission classification, but the probability of 

classification error increases. 

This derivation will be used both to show how to exploit 

a fundamental characteristic of FH signals and to demonstrate 

how signal features with non-Gaussian probability functions 

can be used for emission classification. As will be seen, in 

regions where hopping spans overlap, the classification 

algorithm is equivalent to choosing the FH signal with the 

smallest hop bandwidth as a match with a detected emission. 

When hopping spans can be estimated or are known, this 

knowledge can be used to aid in classifying emissions. To 

illustrate this concept, both analytical and qualitative 

arguments are used. 

To conform with the requirements for Baysian analysis, 

the frequency-based classification algorithm assumes that each 
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hop frequency from the i-th FH signal is a random sample (from 

the perspective of the receiver) taken from a process with 

probability mass function gr(f|(|)^) . Since the hop frequencies 

from a FH signal form a discrete pseudo-random sequence and 

the total number of hop frequencies is usually large, the 

assumption of a continuous distribution can be used to 

simplify the calculations. This assumption introduces errors 

that are small when the bandwidth of the unhopped signal is 

much smaller than the detector bandwidth. 

1. Emission classification with known hopping spans 

Consider, first, the trivial case of a signal space which 

consists of Ng FH signals with precisely known, non-

overlapping hopping spans. For these conditions, emissions 

can be classified without error using only the emission 

frequency. When an emission is observed, it is matched to the 

FH signal with the hopping span that contains the emission. 

In this example, the data, X{n) , used by the 

classification algorithm is a random variable indicating the 

spectral occupancy of a portion of the spectrum. The data are 

a function of both time and frequency, but to avoid needless 

complexity, the epoch dependency of the data will be 

suppressed. Define the indicator function C(0 [27] to be 
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equal to one when its argument is true and zero when it is 

false. In terms of the indicator function and the periodogram 

defined in equation (27), the data are expressed as 

%(n)=((Ar(n)>n) (42) 

If the epoch dependency of the data were explicitly 

shown, the expression for the data would be 

A'(i2,e) =Ç (iv(j2,e) >ti) 

Figure 9 shows a simulated periodogram and the data used 

by the classification algorithm. The periodogram contains 

three frequency bins with amplitudes greater than the 

threshold, possibly indicating three signals with different 

amplitudes. The data used by the classification algorithm as 

input, x{n) , are zero for all but the three frequency bins 

where IV(rj) >ti. In those bins, the data are equal to one. 

i V r--A--4"r -r 

b in  number ,  n  bio number, n 

Figure 9. Periodogram and data for emission classification 
using emission frequency taken from a single epoch 

The classification algorithm considers only those 
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frequency bins where x(n)=l, since unoccupied bins are of 

little interest to the intercept receiver. 

Let be the probability that the hop frequency 

from the i-th FH signal is in the Ji-th frequency bin during 

the current epoch. The hop frequencies from each FH signal 

are assumed to have a discrete uniform random distribution 

because the spreading code is a pseudo-random sequence and the 

length of the spreading code is very long compared to any 

practical observation time. No periodicity can be detected by 

a practical intercept receiver, so the assumption of a random 

distribution is justified. The uniform assumption is 

justified by noting that this distribution is optimum for 

providing the greatest protection against interference or 

interception by an unauthorized receiver. Non-uniform 

distributions are possible, but are sub-optimal. 

The probability of occupancy of the n-th bin in the 

detector by the i-th FH signal is the same as the probability 

that any hop frequency contained within the bandwidth of the 

bin will be occupied by an emission. This probability is 

given by the ratio of 1) the number of hop frequencies 

contained in each bin of the receiver to 2) the total number 

of hopping channels, or 
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gr(̂ „|<t)̂ ) = 

Otherwise 

(44) 

The distribution parameters needed to describe the 

distribution of hop frequencies is the set 

The number of hopping channels, t is not a necessary 

parameter because it can be calculated from the other 

parameters using equation (6). When the number of channels is 

large, Nc-B^/Bc , and equation (44) becomes 

gr(f„|(|>̂ ) = # (45, 

0 otherwise 

Equation (45) is not a function of B^ or , so the 

distribution parameters needed to describe the distribution of 

hop frequencies has been reduced to } . Equation (45) 

can be interpreted as the probability of occupancy of a 

portion of the spectrum centered around f=f„ with bandwidth B^ 

by a continuous uniform random process. This interpretation 

is reasonable, since when the number of hopping channels is 
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large, the probability mass function of the hop frequencies is 

closely approximated using a continuous uniform random 

probability density function. This approximation will be used 

in the derivation of the frequency-based emission 

classification algorithm. 

Let J be a random variable indicating which signal should 

be matched with a detected emission. If the emission in the 

n-th. frequency bin is from the i-th FH signal, then 1=1. If 

the probability of false alarm is assumed to be small, a bin 

is declared to be occupied only if an emission from a FH 

signal is present. The signal match probability (the 

probability that a detected emission is from the i-th FH 

signal given the data and knowledge of the distribution 

parameters) based on the frequency of a single emission is 

then given by 

P [J=ilx(n) = 
1 if gr(f^|<l)i) #0 

0 OTHERWISE 
(46) 

Since the hopping spans of the FH signals do not overlap, 

the signal match probability is degenerate, and the emission 

frequency is sufficient for emission classification. The 

classification algorithm is equivalent to matching a detected 

emission to the FH signal that has a non-zero hop frequency 

distribution in the portion of the spectrum where the emission 

is located. 
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When the hopping spans of the signals overlap, the 

emission frequency no longer uniquely determines the FH signal 

of origin, but it does indicate which FH signal is more likely 

to have produced an emission. 

Consider the classification problem when FH signals have 

overlapping but unequal hopping spans. For simplicity, 

suppose the receiver must classify a detected emission as 

being from one of two FH signals ( Ng=2) using only the 

frequency of the emission (^^=1, a single feature 

classification algorithm). The number of channels for both FH 

signals is assumed to be large, so a uniform distribution 

across the hopping span sufficiently describes the 

distribution of the hop frequencies. The distribution 

parameters for the classification algorithm are thus 

, and the hop frequency distribution for each FH 

signal is given by 

(47) 
fh 

As an example, let the distribution parameters for the 

two FH signals be <1)^ = {40,60} and <|)2={55,65} on an arbitrary 

frequency axis. Hop frequencies from the first FH signal 

assume values ranging from 40 to 60, while hop frequencies 

from the second FH signal assume values from 55 to 65. 
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Figure 10. Hop frequency probability density functions for 
the two-signal example 

There are five regions of interest, as shown in 

Figure 10. Regions I and V lie outside the hopping span of 

either FH signal. No emissions should be detected in either 

of these regions. An emission detected in region II is 

matched with the first FH signal with probability of one. An 

emission detected in region IV is likewise matched with the 

second FH signal, also with probability one. Because the 

hopping spans of the two FH signals overlap in region III, an 

emission detected in this region is potentially from either FH 

signal. However, the signal match probabilities for the two 

FH signals are not equal in this region, indicating that one 
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choice is preferred. 

The probability of occupancy for any bin is for 

the first signal and for the second. By applying the 

law of total probability and using equation (45), the total 

probability of occupancy for a bin is 

P [X(J2) =1] gr(f„|<|)S l=i) P [ J=i] (48) 
i=l 

where P[I=i]=l/Ng is the a priori probability that a detected 

emission is from the i-th FH signal. In region III, this 

function is evaluated as 

P[x(iî) =1] =-^ 
bI BI 

(49) 

To calculate the probability that an emission from the 

i-th FH signal is present in the n-th bin, first note that if 

the hop frequencies from different FH signals are independent, 

the probability of occupancy conditioned on the signal being 

from the i-th FH signal is given by 

P [x(/2) =l| J=i,<|)^,<|>2,...,(J)"''] =P [x(r2) =l| J=i,<j>-^] (50) 

This implies that the sequence of hop frequencies from 

one FH signal is not influenced by the presence of other FH 

signals. Using this fact and Bayes rule, the signal match 

probability is P[J=i|jic(7î) =l,4>^,(|)2,...,(j)"®] , where 
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P[J=i|jf(n) =l,<t)S...,<i)̂ ''] = =l|J=i,(|)̂  PjJ=i|(l)S...,(|)̂ '] (51) 
P 1% ( J]) —1] 

Equation (51) can be interpreted as the probability that 

an emission in the n-th bin is matched with the i-th signal 

given knowledge of the hopping spans of each FH signal. The 

expression P [J=i|<|)̂ ,...,<j)"®] represents the a priori probability 

that an emission located in the n-th bin is from the i-th 

signal, and is assumed to equal l/Ng. Using this assumption 

and the law of total probability, equation (51) can be 

rewritten as 

^P[x{n) =l|j=i,<l)^] 
P[J=i|x(i2)=l,<t>i,<l)2,...,<|)^-] =- ^ (52) 

" 3  

T P[x(73) =l|j=iî?,<|)'"] P[j=jn,<t>'"] 
m=l 

Equation (52) can be used to determine which FH signal an 

emission is most likely matched with. First, note that the 

probability of the n-th bin being occupied by the i-th FH 

signal, P [x(n) =l| J=i,(|)^] , is equal to g(f„|(|)^) . From equation 

(45) , 

P[x(n) =l| J=i,4)-^] =-

0 OTHERWISE 

In region III of the above example, the signal match 

probability is 



www.manaraa.com

71 

P[I=i\x{n) =l,<j)^,<|)2] 

(54) 

The signal match probability is thus inversely 

proportional to the hop bandwidth, B^, of the FH signal. 

Since the maximum likelihood criterion means emissions are 

classified as being from the FH signal with the largest signal 

match probability, equation (54) shows that in regions where 

hopping spans overlap, an emission is classified as being part 

of the FH signal with the smallest hop bandwidth. The signal 

match probability is only a function of the hop bandwidth (and 

span) of the FH signals and not the channel spacing. 

The signal match probability given by equation (51) is 

valid in all regions of the spectrum, not just where the 

hopping spans of FH signals overlap. For example, in region 

II, P[J=2|x(ja) =l,<j)S<|)2] =0 and i'[J=l|x(n) =l,<j>S<t)2] =1. The 

signal match probability is equal to 0 when i=2, and 1 when 

2=1, so any emission detected in region II is classified as 

being from the first FH signal. 

Figure 11 shows the signal match probabilities for each 

of the five regions obtained using equation (54), (60-40) 
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Figure 11. Signal match probability as a function of the 
emission frequency for the two-signal example 

and (65-55) . The preceding analysis provides a theoretical 

basis for quantifying the observation that an emission in 

region III is more likely to be from the second FH signal. 

Figure 11 shows that in region III, an emission is twice as 

likely to be from the second FH signal. In addition, the 

theoretical analysis agrees with the heuristic arguments in 

all other regions. 

A short summary of the results of this section is useful. 

The maximum likelihood criterion dictates that a detected 
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emission should be matched with the FH signal with the largest 

signal match probability to minimize the probability of 

classification error. When emission frequency is used as 

data, this is equivalent to selecting the signal with the 

smallest hop bandwidth. In region III of the above example, 

signal 2 is selected as a match with detected emissions with a 

probability of 0.67 that the choice is correct. The high 

probability of error suggests that the emission frequency 

should not be used as the sole source of information, but as 

an additional source of information which has the potential to 

improve overall classification accuracy. 

2. Emission classification usina order statistics 

In the previous section, known hopping spans were used 

to calculate the signal match probability which was found to 

be dependent only on the hopping spans of the FH signals. 

Because the hopping span of a FH signal is generally not known 

in advance, the intercept receiver must be capable of 

estimating the hopping span of each FH signal in order to 

classify emissions using frequency. In this section, the use 

of order statistics for estimating the hopping span of FH 

signals is examined. 

When the hopping spans are not known, the intercept 

receiver estimates the signal match probability by calculating 
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P =1] , the probability that an emission in 

the n-th bin is part of the i-th FH signal using the 

distribution parameter estimates. The symbol over a 

distribution parameter is used to denote an estimated 

quantity. Using Bayes rule and noting that 

P [x(r2) J=i] =P [x(n) =l,$^|j=i] because data from 

different FH signals are independent, the estimate of the 

signal match probability is 

P[J=i|x(;a) =1,$:,$̂ ...,$̂ '] = =l,$^|J=i]P[J=i3 (55) 
P[x(r!) =1,$̂ ,$̂ ,...,$ 

As was the case with known hopping spans, P[J=i]=l/Wg is 

interpreted as the a priori probability that a detected 

emission is part of the i-th FH signal. Since the hopping 

spans are not known, every FH signal must be considered a 

potential source of an emission. 

The first term in the numerator of equation (55) can be 

interpreted as the probability of having an emission from the 

i-th FH signal present in the n-th bin and of having the 

current distribution parameter estimate. Let be the 

distribution parameter estimate conditioned on the assumption 

that the emission is from the i-th FH signal. The first 

numerator term can be rewritten as 
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P [x(n) =l,$^| J=i] =P[%(a) =l|$^] p [$^|$^] (56) 

The denominator of equation (55) can be viewed as a 

normalization factor by applying the law of total probability 

and noting that 

P [x(n) =1,$^,$^,...,$""] =5^ P [x(73) =1,$'"1j=j7î] P [I=in] (57) 
m=l 

which is the same for all FH signals. 

A more useful expression for the estimate of the signal 

match probability is formed by substituting equations (56) and 

(57) into equation (55) and canceling common terms. The 

result of these operations is 

P[x=i|xu)=i,r,r 
"s (58) 
VP[X(23) =1|$:]P 
m=i 

To evaluate equation (58), the distribution of the 

distribution parameter estimates needs to be calculated. Let 

the number of emissions from the i-th FH signal detected by 

the receiver at the current epoch be denoted by . The set 

of emission frequencies that have been observed from the i-th 

FH signal form a random sample of size of independent 

random variables taken from a population with probability 

distribution function gr(f„|4)̂ ) . 
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The hopping spans are estimated using the smallest and 

largest hop frequencies observed from the FH signal. The 

smallest and largest hop frequency order statistics are simply 

the smallest and largest hop frequencies observed from a FH 

signal, or 

a ̂ =min{fo''+Cjfŝ } (gg) 

b^=îCiax{fo'-+CkBç} 

where fo^ and are the same quantities defined in equation 

(2) with the added superscript "i" used to indicate different 

FH signals. The order statistics a ̂  and are consistent 

but biased estimators of f/ and respectively. 

The cumulative distribution functions of the order 

statistics are easily calculated from the cumulative 

distribution function for the hop frequencies. For the 

smallest hop frequency order statistic, the probability that 

any one hop frequency is greater than f=b^ is . The 

probability that all Ng hop frequencies are greater than f=b^ 

is this probability raised to the iv/-th power since the hop 

frequencies are assumed to be independently distributed. If 

the cumulative density function of the smallest hop frequency 

order statistic is represented by , this argument 
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results in the following expression: 

1-Ĝ Xf) =(1-G(f|(|)4r" (60) 

Using a similar argument, the cumulative distribution 

function for the largest hop frequency order statistic is 

shown to be 

GgXf) =(G(f|<|)4r" (61) 

For the specific example of hop frequencies with a 

uniform random distribution, the cumulative distribution 

function of the hop frequencies within the hopping span is 

given by 

G(f|(|)4 = 
f-fi 

fh-fi 
( 6 2 )  

Substituting this function into equations (60) and (61), 

the distributions of the hop frequency order statistics are 

found to be 

G,i(f) =1-
fj-f (63) 

GsAf) = 
f-fi 

w. 
(64) 

The hop frequency order statistics are computationally 
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efficient, because they can be recursively calculated and 

require minimal processing or storage. The hop frequency 

order statistics also converge rapidly due to the exponential 

dependence on the number of observed emissions. 
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Figure 12. Cumulative distribution function for the largest 
hop frequency order statistic for 1,5,10,20, and 
50 detected emissions 

Figure 12 shows the cumulative distribution function for 

the largest hop frequency order statistic for different 

numbers of observed emissions. The hopping span has been 

normalized to <1)^=(0,1) . After only 10 emissions, the median 

hop frequency order statistic encloses over 90 percent of the 
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hopping span. This demonstrates the efficiency of order 

statistics for interval estimation when the hop frequencies 

are uniformly distributed. 

Let the conditional distribution parameter estimate, 

be the estimate of the distribution parameter conditioned on 

the assumption that the emission detected at the frequency 

is part of the i-th FH signal. When order statistics are used 

as the distribution parameter estimates, the conditional 

distribution parameter estimate is 

={ min(a ,max(2j f^) } 
(65) 

= {ac /jbc) 

Having defined the a priori hop frequency distribution, 

the distribution parameters used by the receiver, the 

distribution of the distribution parameter estimates, and the 

conditional distribution parameter estimates, equation (58) 

can now be evaluated. 

The conditional probability of occupancy of a frequency 

bin by an emission from the i-th FH signal is given by 

P [ x ( n )  = l | $ ^ ]  = — ( 6 6 )  
b^-ai 

The second term in the numerator of equation (58) is the 

probability of having the current distribution parameter 

estimates given the conditional distribution parameter 
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estimates. When order statistics are used as the distribution 

parameters, this quantity is equal to 

(67) 

Using the joint probability of the largest and smallest 

order statistics, equation (67) is evaluated as 

P ^ gr(a ̂ |$^)sr(£)^|$^)(G(jb^|$^) -G(a (68) 
(iVe -2) ! 

This rather formidable expression can be evaluated using 

equations (62) and (45). The resulting equations simplifies 

to 

= - f  ]  b^-a^\ 

-2)! \ W-a^ j  
IfJ-2 

(69) 

Equation (69) is a function of the bandwidth computed 

using both the current distribution parameter estimates and 

the conditional distribution parameter estimates. 

When the emission frequency lies within the estimated 

hopping span of the FH signal, b^-a^=bc-cic and the last 

factor in equation (69) is unity. When the emission frequency 

lies outside of the estimated hopping span of a FH signal, 

b^-a^<bc-ac and the probability of having the current 

estimate of the distribution parameters is less. As greater 

numbers of emissions from a FH signal are observed, equation 



www.manaraa.com

81 

(69) rapidly converges toward zero for any emission frequency 

not contained within the estimate of the hopping span. The 

farther outside of the estimated hopping span the emission 

lies, the less likely it is to be from the signal. Also note 

that an inverse relationship to the hop bandwidth is still 

present, so FH signals with smaller hop bandwidths are still 

preferred over FH signals with larger hop bandwidths. 

Using equations (69) and (45), the numerator of equation 

(58) is expressed as 

P[x(n) =11$^] P 1$^] =- f  ]  1  
{N^-2) ! I  be'-a.') 

Wfl-2 

(70) 

The denominator can also be evaluated using equation 

(70), and an expression for the estimate of the signal match 

probability follows. The maximum likelihood criterion can 

then be applied to classify emissions. 

To test the effectiveness of classification using 

emission frequency as a signal feature, a two signal, two 

parameter classifier was implemented and tested using computer 

simulation. The first signal feature was assumed to have a 

Gaussian distribution with known mean and variance. The 

Gaussian processes associated with the two signals were 

separated by 2 standard deviations. Using only these data and 

the maximum likelihood criterion, the probability of 

classification error is 0.159, which can be easily verified 
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from a table of areas under the normal curve. 

The second signal feature used by the classifier was the 

hopping span of each FH signal. For this experiment, the two 

FH signals had equal hop bandwidths, separated by 

the hopping span offset, . The hopping span offset can be 

any positive value. The hop frequencies from both signals 

were uniformly distributed. The classification algorithm had 

no a priori knowledge of the distribution parameters. The 

experiment consisted of generating order statistics for each 

FH signal using the inverse CDF method, generating data using 

the signal features and their distributions, classifying each 

simulated emission and then updating the distribution 

parameter estimates based on the decision. The probability of 

classification error was found by averaging the results of 

many trials with the same hopping span offset. 

When d=0, the hopping spans are completely superimposed 

and the emission frequency does not add any useful 

information. When dil the hopping spans do not overlap, and 

the emission frequency is sufficient for error-free 

classification if the hopping spans are precisely known. 

When both hopping spans are precisely known, the 

probability of classification error is linearly dependent on 

the offset between the hopping spans. When the hopping spans 

are superimposed, the probability of error is equivalent to 
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Figure 13. Experimental probability of sorting error using 
two signal parameters 

the probability of error using just the normally distributed 

data, and decreases to zero linearly as the hopping span 

offset increases to one or more. 

This result can be predicted by theory. When the hopping 

spans are known and hop bandwidths are equal, classification 

errors occur only in the region of the spectrum where hopping 

spans overlap. In this region, the signal match probabilities 

calculated using frequency are equal because the hop 

bandwidths of the FH signals are equal. The probability of 

error in this region is thus determined by the normally 

distributed signal feature. The overall probability of error 

is equal to the probability of error based on the normally 
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distributed data multiplied by the probability that an 

emission is in the region of the spectrum where hopping spans 

overlap. This leads to the following expression for the 

probability of classification error 

When the hopping span estimates were 

initialized using samples from the respective 

distributions, the results for jV^g=15,10,5, and 3 are shown as 

the ascending lines in Figure 13. The probability of 

classification error still displayed a linear dependence on 

the hopping span offset, but the overall probability of error 

was increased. The increase in the level of error was caused 

by the uncertainty in the exact hopping spans of the two 

signals. The increase in the error was less when more correct 

data were used to initialize the hopping span estimates. This 

experiment shows that the hopping spans can be used as a 

signal feature, even when the spans are not known in advance. 

This experiment also demonstrates the importance of correct 

initialization of the distribution parameter estimates. 

This experiment represents an extreme test of the 

classification algorithm since even when the distribution 

parameters are known, there can be up to a 0.159 probability 

of error. If the mean and variance of the Gaussian 

P. se I 
0 . 1 5 9  ( 1 - d )  

0 . 0  
Oad^l 

d>l 
(71) 
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distributions were not known in advance, it is very unlikely 

that the emissions could be classified with any degree of 

accuracy. The level of error can be reduced by either 

increasing the number of signal features, or by reducing the 

variance of the normally distributed data. 
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VI. EPOCH EMISSION CLASSIFICATION 

In this chapter, a multiple emission classification 

algorithm is developed, and its relationship to the single 

emission classifier is discussed. An optimal two emission 

classification algorithm is developed using heuristic 

arguments and statistical theory, and its performance compared 

to the single emission classification algorithm. This 

algorithm is shown to significantly reduce the level of 

classification error present in the single emission 

classification algorithm. The two emission classification 

algorithm is then generalized to show the procedure for 

optimal classification of emissions. Finally, the 

computational requirements of the classification algorithm are 

discussed, along with methods of reducing the requirements 

without degrading emission classification accuracy. 

A. Two-Emission Classification Algorithm 

While the single emission classification algorithm can be 

shown to minimize the probability of classification error, it 

uses no knowledge of other emissions present during an epoch. 

When multiple FH signals are present, classification errors 

are certain to occur when two or more emissions are matched 
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with the same FH signal during an epoch. By checking for 

multiple emissions assigned to a single FH signal, 

classification errors can be detected, and corrective action 

taken in many cases. Unfortunately, the single emission 

classification algorithm does not give any indication on how 

classification errors can be corrected. The multiple emission 

classification algorithm is designed to provide correct 

classifications in many instances when the single emission 

classification algorithm fails. 

B. Single Feature Emission Classification 

Consider an intercept receiver that classifies emissions 

using emission frequency, with the same hopping spans as shown 

in Figure 11. The decision rule from the previous chapter, 

obtained using the single emission classification algorithm, 

is that emissions in region II are matched with the first FH 

signal, and emissions in regions III and IV are matched with 

the second FH signal. The probability of emission 

classification error obtained using this method is 0.25 for 

emissions from the first FH signal (the probability that the 

hop frequency of the first FH signal lies within region III) 

and 0.00 for emissions from the second FH signal (because the 

maximum likelihood criterion classifies all emissions as being 

from the second FH signal in regions III and IV). 
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Common sense dictates that a lower level of emission 

classification error can be obtained by using information from 

all the emissions detected in an epoch together, rather than 

gcxlit') 

X 
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X X 
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g ( X If) g(x If) gCxIi?) 

CASE II CASE IV 

Figure 14. Four possible combinations of regions where 
emissions from the two FH signals can be located 

by classifying based on knowledge of just a single emission. 

When emissions from both FH signals are detected, there are 

four possible combinations of regions where the two emissions 

can be located, as shown in Figure 14. Data from different 

signals are denoted using and . 

When emissions are present in regions II and IV (Case I), 

or II and III (Case II), no classification errors occur with 
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the single emission classification algorithm. When emissions 

are present in regions III and IV (Case III), or III and III 

(Case IV), both emissions are classified as being from the 

second FH signal. Error-free classification is still possible 

in case III since the emission in region IV can only be from 

the second FH signal. A known, but correctable, 

classification error occurs since two emissions are matched 

with the second FH signal by the classification algorithm. 

Only in case IV does an uncorrectable classification error 

occur. In this instance, using all the information from an 

epoch does not add any useful information. The single 

emission classification algorithm pairs both emissions with 

the second FH signal, and a known but uncorrectable 

classification error occurs. 

The probability of classification error can clearly be 

reduced by using all data collected during an epoch. From the 

above discussion, uncorrectable classification errors occur 

only in case IV. Emissions from the first FH signal are 

present in region III with probability 0.25, and emissions 

from the second FH signal are present in this region with 

probability 0.50. The probability that both emissions are in 

region III is the product of these two numbers, or 0.125. The 

probability of an emission classification error using the 

heuristic algorithm developed above is thus 0.125, a reduction 

by a factor of two. 
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C. Epoch Emission Classification Algorithm 

To provide a more rigorous analysis of the two emission 

classification algorithm, let % and zig be bins containing 

emissions from the first and second FH signals respectively. 

The epoch classification algorithm has only two possibilities 

to choose from compared with four possibilities for the single 

emission classification algorithm. Either I(n^^)=l and 

1(112) =2, the converse is true. In a more general situation 

involving N^'FH signals, there are permutations of 

emission/signal classifications from which to choose at each 

epoch. 

An optimum classification algorithm bases its decisions 

on all data collected in a single epoch, instead of data from 

just one emission. In the two-emission single-feature sorting 

algorithm, the optimum classifier should therefore calculate 

P [J{%) =i|x(23j^) =1,x(i32) =1] / the probability that the emission 

in the n^-th bin is from the i-th FH signal given the 

frequency of both detected emissions. In the particular 

example being discussed, the receiver classifies the emission 

in bin by determining the value of i that maximizes 

P[I{n^) =i\x(nj^) =l,x{n2) =1] . This expression is easily 

evaluated using Bayes theorem, and can be written as 
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P [JCiîi) =i|x(ni) =l,x(r22) =1] = 

P[x(z2i) =1,x(j22) =l|T(z2i) =i] P[J(i3j^) =i] 

P[x(i2i) =l,x{n2) =1] 

The denominator of equation (72) can be viewed as a 

normalization term because it is not a function of i . The 

second term in the numerator, P [Z=i] , is the a priori 

probability that the emission in bin is from the i-th FH 

signal, and is assumed to be equal to l/Ng. Maximizing 

equation (72) is therefore equivalent to finding the value of 

i that maximizes P [x(23i) =l,x(zi2) =11-^(^1) =i] • Using the 

independence of the FH signals, this can be rewritten as 

P [x{n^) =l,x(n2) =l| =i] = 
( 73 ) 

P [x(ni) =l|j(22i) =i] P [*(^2) =l| =i] 

When the signal feature is a known hopping span, equation 

(73) is equivalent to gr(f„J(|)^) g(f„J(|)2) when i=l and 

gr(f̂ |̂<j)2) when i=2 . In the two emission example, the 

epoch emission classification algorithm is shown to simplify 

to selecting the combination of signal/emission pairings that 

maximizes the product of the signal match probabilities. 

Table 1 shows the four combinations of regions where 

emissions are present in the two-signal frequency-based 

example, and the test statistics for both possible hypotheses. 
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The test statistics are calculated using equation (47). Under 

hypothesis 0, emissions are correctly classified. Under 

hypothesis 1, both emissions are incorrectly classified. When 

knowledge of both detected emissions is used for 

classification, the correct choice is indicated (hypothesis 0 

has the greater probability of occurring) in the first three 

cases. 

Table 1. Signal match probabilities using the epoch 
classification algorithm and emission frequency 
as a signal feature 

Emission 
Location Hypothesis 0 Hypothesis 1 

FH S 

1 

ignal 

2 

II III 0.005 0.000 

II IV 0.005 0.000 

III IV 0.005 0.000 

III III 0.005 0.005 

When both emissions are contained in region III, the 

epoch classification algorithm indicates that both hypotheses 

are equally likely, and either can be selected with equal 

probability of error. Suppose that in this instance, both 

emissions are classified as being from the second FH signal, 

which was the rule obtained from the single emission 

classification algorithm. The probability of classification 

error for the first FH signal is now the probability that both 
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emissions are present in region III, or 0.125. The 

probability of classification error for emissions from the 

second FH signal is still zero. The overall probability of 

classification error is the sum of these two numbers, or 

0.125. The single emission sorting algorithm was previously 

found to have a probability of classification error equal to 

0.250. By using knowledge of both emissions, the epoch 

classification algorithm has reduced the probability of 

classification error by a factor of two. 

An interesting example that serves to illustrate how the 

epoch emission classification algorithm can improve 

classification accuracy occurs when classification is 

attempted using a single datum with a Gaussian distribution 

with known mean and variance. Let be normally distributed 

with mean and standard deviation Let also be 

normally distributed with a different mean, , but the same 

standard deviation, a^. To classify the emissions, the 

classification algorithm must choose between the following 

hypotheses 

HqI I{n^) =1/ T(Jig) —2 
(74) 

I{n^) =2, =1 

Using equation (73), the hypothesis test is equivalent to 

a test for distribution given by the product of the individual 
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signal match probabilities, or 

This hypothesis test can be solved by using sufficient 

statistics. By taking the natural log of both sides and 

canceling common terms, the hypothesis test given by equation 

(75) simplifies to 

x[n^) ^ x{n^) (76) 

#0 

This interesting result shows that when the epoch 

classification algorithm is used, the emission with the 

smallest data calculated from it is classified as being from 

the FH signal with the smallest mean. This decision rule is 

considerably different from the decision rule obtained using 

the maximum likelihood criterion and data from a single 

emission. There are no fixed decision regions. Instead, the 

observations are ordered, with the largest observation being 

matched with the FH signal with the larger mean. 

The probability of error of the epoch classification 

algorithm is the average probability that an observation from 

the second FH signal is less than the observation from the 

first. Expressed in terms of the probability distribution 

functions of the data, the probability of classification error 
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is equal to the average probability that the datum from the 

second FH signal is less that the datum from the first FH 

signal, or 

f _JL_ fe'^i ldx^e'^\ Idx^ ( 7 7 )  
J ./Ô^n J 

The integral within the parenthesis in equation (77) is 

recognized as the probability that is less than . This 

probability is multiplied by the probability of obtain that 

precise value of , and integrated over all possible values 

to find the average likelihood that x^<x^. 

Equation (77) is not readily evaluated, so numerical 

techniques were employed to calculate the probability of 

classification error. Figure 14 shows the log of the 

probability of classification error based on the normalized 

distance, d= /a^, between the two processes, and the 

probability of classification error for both the single 

emission classification algorithm and the epoch emission 

classification algorithm. The epoch emission classification 

algorithm has significantly lower levels of error when 

compared with the single emission classification algorithm. 

The difference in the probability of classification error is 

least when the normalized distance is zero, and increases as 

the normalized distance increases. 
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Figure 15. Log of the probability of error for the epoch 
emission classification algorithm, and the single 
emission classification algorithm 

D. Two Emission, Multiple Feature Epoch Classification 

The two-emission epoch classification algorithm outlined 

above can be generalized to include the case of multiple 

signal features calculated from each emission. At each epoch 

in which two emissions are detected, the receiver classifies 

emissions by solving the hypothesis test 

Ho 

P p |lfe2]  ̂p p (78) 

when the distribution parameters are known. When the 

distribution parameters are not known in advance, estimates of 
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the signal match probability given by equation (58) are used 

instead. 

Returning to the two-signal, two-feature example used to 

produce the results of Figure 13, the same system was used as 

input to a two feature epoch classification algorithm. 

Figure 16 shows the experimentally determined probability of 

classification error obtained using the epoch classification 

algorithm. The distribution parameter estimates were 

initialized with 2, 5, 10, and 15 correctly-classified 

emissions before the classification algorithm was used. 
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Figure 16. Probability of classification error for the epoch 
emission classification algorithm using normally 
distributed data and emission frequency as data 
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Comparison of Figure 16 with Figure 13 shows that the 

probability of classification error has been reduced by 

approximately a factor of two overall. 

When classifying emissions using only the normally 

distributed data, the probability of classification error is 

exactly one half of that obtained using single emission 

classification. When the offset increases to the point where 

the hopping spans are adjacent, the probability of 

classification error is closely approximated by a quadratic. 

The decrease in classification error was linear with the 

single emission sorting algorithm, so not only is the 

probability of classification error less, but it also 

approaches zero faster with increasing hopping span offset. 

Reduction in the level of classification error is due 

both to the greater accuracy of the epoch classification 

algorithm, and to the better signal feature estimates which 

are created as a consequence of more accurate emission 

classifications. The epoch classification algorithm is also 

less dependent on correct initialization of the distribution 

parameter estimates, since the probability of classification 

error is less sensitive to the number of correctly classified 

emissions used to initialize these estimates. The epoch 

classification algorithm is thus more robust and less subject 

to problems arising from incorrect classifications during the 

first few emissions observed from a FH signal. 
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E. Multi-Emission and Feature Epoch Classification 

In this section, the epoch classification algorithm is 

generalized to classify an arbitrary number of emissions. The 

form of the optimal classification algorithm for FH signals 

is examined. As will be shown, the test statistic for a 

multi-emission, multi-feature epoch classification algorithm 

can still be written in terms of the signal match probability 

for a single emission, but it does not have the simple form of 

the two emission classification algorithm. 

To determine the form of the test statistic for a general 

epoch classification algorithm, it is instructive to look at 

the probability that an emission is from the i-th FH signal 

using information from all detected emissions in an epoch. 

This probability can be expressed as 

P [̂ (rJi) iJ(ni) =i] P [I{n^) =i] 

P [x(iii) =l,x(n2) =l,...,x(njj) =1] 

The denominator of the above expression is independent of 

i, and serves as a normalization term. The function 

P[J(iii)=l] represents the a priori probability that an 

emission is from the i-th FH signal, and is also assumed to be 

independent of i. Thus, equation (79) can be maximized by 
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finding the value of i that maximizes the first term in the 

numerator. Using the independence of the random processes 

from different FH signals, this term can be rewritten as 

P[%(T2i) ) |J(r2i) =i] = 
(80) 

|J(ni) =i] P i - iXirij,) |J(i2i) =i] 

The first term can be evaluated easily using the 

relationship P =i] =P[2:(.ni) and equation (37) . 

The second term represents the probability of obtaining the 

remaining data given that none of the emissions are from the 

i-th FH signal. When there are only two signals, the second 

emission is classified by default. When there are more than 

two emissions, the second numerator term is not as easy to 

evaluate. Through repeated applications of the law of total 

probability, this term can be rewritten as 

P[K(n2) |J(i3i) =i] = 

A &-1 
i2*i 

^ P[i(jrJ3) [JCiîj) =i3] (81) 

ik *,-2 
I3*i2 
i3*i 

Equation (81) is a series of nested summations used to 

evaluate the probability that the remaining emissions are from 
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any but the i-th FH signal. Its function is to reduce 

classification errors by considering the probability of the 

remaining classifications. For example, if and i=l, 

equation (81) is equal to 

P IJ(j3i) =1] = 

-|P I J(j32) =2] P [2c(n3) \l(n3) =2] + (gg) 

-|P [xin̂ ) lUn̂ ) =3] P \l(n̂ ) =2] 

If the emission in bin is from the first FH signal, 

there are two possibilities for the remaining emissions. 

Either J (rig) =2 and J(r23)=3, or =3 and I{n^)=2. Since 

there are only two possibilities, the a priori probability of 

each is assumed to be one-half. 

When Ng=2 , equation (79) is equal to 

P [J(ni) =i|a:(i3i) ] = 

P[z(r2i) |J(i^i) =i]P[J(J2i) =i] 

P [x(i2i) =l,x{n2) =1] 

which is identical to the two-emission epoch classification 

algorithm given by equation (72). Unfortunately, the number 

of computations needed for each emission increases rapidly 

with the number of FH signals. The computational requirements 

of the classification algorithm are a concern, since emission 

feature estimation and classification must take less time than 
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an epoch to complete. 

F. Multiple-Emission, Multiple-Feature Simulation 

A simulation of the RF environment was created to test 

the accuracy of the epoch emission classification algorithm in 

a realistic signal environment. A simulation was used because 

of the difficulty in obtaining an analytical solution in all 

but the most elementary situations. In addition, the 

simulation provided useful experience with factors not 

included in the analytical model such as the presence of 

fixed-frequency signals, collisions in frequency of two FH 

signals, and signal feature initialization and estimation. 

Up to 25 FH signals were present in the simulation, 

although no more than 5 FH signals were allowed to have non­

zero amplitude functions at a time. The number of FH signals 

active at any epoch, N^, was always less than or equal to 

five. The number of FH signals active during an epoch was 

estimated by the receiver, since it was provided with no a 

priori information. The only constraints placed on the FH 

signals by the simulation were (1) dwell times were longer 

than a single epoch, (2) dwells were an integer number of 

epochs long, and (3) the hopping bandwidth was entirely 

contained within the frequency span analyzed by the intercept 
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receiver. A signal magnitude versus frequency display of an 

RF environment created by the simulation was previously shown 

in the bottom of Figure 2. 

An feature classification algorithm was implemented 

for the simulation. The data used by the classification 

algorithm were emission frequency, epoch-of-arrival, signal 

magnitude, and azimuthal angle-of-arrival. The algorithm for 

exploiting the emission frequency was presented previously. 

The epoch-of-arrival was assumed to have a degenerate 

distribution. The remaining data were assumed to have 

Gaussian distributions with known variances but unknown means. 

To reduce the computational requirements of the simulation, a 

two-step method for emission classification was devised. The 

single emission classification algorithm was used until an 

error was detected. The epoch classification algorithm was 

then used to resolve those errors. 

The effect of the epoch classification algorithm was to 

minimize the probability of a classification error or errors 

occurring in an epoch. This contrasts with the single 

emission classification algorithm, which minimizes the 

probability of classification error for an emission using just 

the data calculated from the emission. Figure 17 shows a 

histogram of the number of transmissions with the same 

percentage of correctly classified emissions. A transmission 
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Figure 17. Histogram of classification accuracy obtained from 
the simulation 

refers to a portion of a FH signal where the amplitude 

function is non-zero. The figure suggests that emission 

classification can be quite accurate using just a few signal 

feature estimates. 

The results of the simulation also show that there are 

several factors which influence classification accuracy aside 

from the number of features used by the classification 

algorithm. Another determining factor is the quality of the 

distribution parameter estimates. When the distribution 

parameters are not known in advance but are estimated from 

past decisions, the quality of the estimates is determined by 

the quality of the signal feature estimates and the accuracy 
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of the classification algorithm—especially in the first few 

dwells detected from a FH signal. High quality data increase 

the percentage of correct classifications and the quality of 

the distribution parameter estimates. Other factors 

determining classification accuracy are the total number of 

signals present, both FH and fixed frequency, and the amount 

of "separation", in information space, between features of 

different signals. 

When the emission classification accuracy is above 

approximately 90 percent, the classification algorithm is 

successful. The vast majority of the transmissions shown in 

Figure 17 are in this category. Classification errors 

occurred only during collisions in frequency between emissions 

from two or more FH signals, or between an emission from a FH 

signal and a strong, fixed-frequency signal. In the event 

that there were no collisions in frequency during a 

transmission, classification accuracies of 100 percent were 

achieved. 

When the emission classification accuracy was between 70 

and 90 percent, FH emissions were not being properly 

classified in portions of the spectrum occupied by low-power 

fixed-frequency signals. This occurred if the FH signal had a 

very low amplitude, or if its features were close to the 

features of a fixed-frequency signal. The classification 

accuracy could be improved by either (1) improving the 
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accuracy of the data (thereby increasing the separation in 

information space), or (2) by using additional signal features 

for classification. 

The two transmissions with emission classification 

accuracies near 50 percent had nearly identical signal 

features. The classification algorithm consequently 

interchanged emissions from the two transmissions. To make 

this scenario less probable, either the data quality should be 

improved or the number of signal features used by the receiver 

should be increased. 

Finally, a lone transmission is shown with an emission 

classification accuracy near zero. When this situation 

occurred, the cause was inevitably attributable to either a 

failure to initialize properly (which represents a short 

period of time of the total transmission) or a failure of the 

algorithm which was used to evaluate the classification 

accuracy. 

The epoch emission classification algorithm can never be 

guaranteed not to fail, since a scenario can always be 

envisioned where the data used for classification are not 

sufficient. However, failures, when they occur, do not have 

catastrophic consequences. Instead, they tend to gradually 

degrade the accuracy of the classification algorithm. The 

vast majority of the transmissions had small to moderate 

levels of classification error. This simulation has shown the 



www.manaraa.com

107 

algorithm to be extremely robust and accurate. 
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VII. CONCLUSIONS 

Spread spectrum modulation was developed as a means of 

providing secure, interference-resistant communications. 

Several different methods of spread spectrum modulation are 

currently used for military, commercial, and experimental 

communications. Powerful new digital signal processors open 

the possibility that the security and anti-interference 

properties of frequency hopped spread spectrum modulation can 

be diminished. In this dissertation, a new method of 

defeating frequency-hopped spread spectrum modulation using 

fast spectral analyses and emission classification was 

proposed. Spectral analyses were used to detect emissions 

from FH signals, while the classification algorithms were used 

to identify emissions from the same FH signal. 

Both analog and digital radiometric receivers were 

examined. A digital receiver is more practical than an analog 

intercept receiver because it does not require numerous analog 

bandpass filters. Also, samples of the received signal used 

to calculate the periodogram can be stored and used again to 

calculate data for the classification algorithm. The epoch 

length of the digital receiver is limited by the time required 

to sample and analyze the data. Large FFT's are needed to 

achieve fine spectral resolution, but require greater 

processing power, and longer observation times than smaller 
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FFT's. To avoid complications that arise because the 

intercept receiver is not synchronized with the FH signal, the 

observation time in an intercept receiver should be less than 

the smallest expected dwell time. To meet this criterion, a 

digital intercept receiver must either have a coarser 

frequency resolution than an optimal receiver, or use parallel 

processing to analyze delayed versions of the input. 

The theoretical foundations of Baysian analysis and the 

application of this theory to the emission classification 

problem was described. A maximum likelihood emission 

classification algorithm using data with arbitrary 

distributions was outlined. Several examples were given to 

illustrate how the algorithm performed in simple situations. 

The effects of key factors affecting emission classification 

accuracy such as the number of features used by the receiver 

and data accuracy were discussed. An epoch-level emission 

classification algorithm was presented. The epoch-level 

emission classification algorithm was found to perform 

significantly better than the maximum likelihood algorithm, 

but is significantly more complex—especially if the number of 

data used for classification or the number of signals are 

large. 

In a computer simulation designed to determine the 

classification accuracy in a realistic signal environment, 

classification accuracies of up to 100 percent were observed. 
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The classification accuracy was frequently over 90 percent— 

even when 30 percent of the detector bins were occupied. 

Baysian classification combined with radiometric detection was 

found to be an effective means of defeating FH modulation. 

Because implementation of a digital intercept receiver 

requires the use of technology and techniques that are just 

becoming practical, numerous research opportunities exist. 

While the subjects cannot be considered separately, these 

opportunities are in the areas of signal analysis and emission 

classification. 

In signal analysis, a rudimentary algorithm for detecting 

sinusoids in white noise was presented. Although 

mathematically tractable, this model is not likely to 

accurately depict the spectrum that would be encountered by an 

intercept receiver. The presence of wideband, low-power 

signals such as direct sequence transmissions or television 

broadcasts was not taken into account by this first analysis. 

In addition, the hopping bandwidth that must be analyzed is 

extremely large, and there is a possibility that the noise 

spectrum may not be flat. Separate processors operating on 

the output of each frequency bin may be necessary for improved 

signal detection. Research into the probability of detection 

for modulated signals, the effects of bin spreading, finite-

resolution samples, and detection algorithms for sinusoids in 

colored noise or time-variant low-power signals all need to be 
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investigated. 

In the area of signal classification, classification 

techniques and data estimation both need further research. 

This research could be extended by looking at different 

choices for the cost function and a priori probabilities to 

lower the probability of classification error. Also of 

interest is determining what signal features are most useful 

in classifying emissions, and how many features need to be 

used for accurate sorting under the conditions most likely to 

be encountered. Non-Baysian classification techniques could 

also be attempted. 

Although many questions remain to be addressed, this 

research demonstrated the feasibility of defeating frequency-

hopped spread spectrum modulation using Baysian 

classification, and has laid the groundwork for future 

research activity. 
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IX. GLOSSARY OF SYMBOLS 

Ait) amplitude function 
A ̂ smallest hop frequency order statistic 

largest hop frequency order statistic 
be channel spacing 

Bn hop bandwidth 

bd signal detector bandwidth 
pseudo-random spreading code 

d(x) decision 
c?iU) Bayes rule 

Esin) signal power in the n-th bin 

4+% hop frequency 

fi lower limit of the hopping span 
f. upper limit of the hopping span 
gi-) probability distribution function of the data 
G{') cumulative distribution function of the data 
G^Af) smallest hop frequency order statistic CDF 
Ggi(f) largest hop frequency order statistic CDF 

j-th hypothesis 
i FH signal index 
I random variable denoting which FH signal an 

emission is from 
j receiver decision of the FH signal which produced 

an FH signal 
k dwell index 
Li-r) loss function 

number of channels 

number of FH signals present 

Nj number of emissions observed from the i-th FH 
signal 
number of features used for classification 

No single sided noise power spectral density 
n(t) additive noise 
Q' sufficient statistic 
Ri-r) risk , and FFT of the received signal 
R'(-r) FFT of the frequency-shifted received signal 
r (•, •) Bayes risk 
Rif) Fourier transform of the received signal 
R'i') Fourier transform of the frequency-shifted signal 
r ( t) received signal 
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r'( t) frequency-shifted received signal 
s(t) FH signal 

gated fixed frequency signal 
V{t) analog radiometer output 
W{n,e) periodogram 
W(n) periodogram suppressing the epoch dependency 
Yin) spectral amplitude of a noise shaping filter 

¥ distribution parameter 

¥ distribution parameter estimate 
n ( • )  prior distribution 

n detection threshold 
X data 
p (•) unit pulse function 
tc dwell time 
e epoch index 
0(t) phase function 

oi standard deviation of a Gaussian random variable 

pi mean of a Gaussian random variable 

C(0 indicator function 
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X. APPENDIX A: DETECT.FOR 

C*** DETECT.FOR ********************************************** 
C 
C FUNCTION - CALCULATE PROBABILITY OF DETECTION FOR SIGNALS 
C USING A DFT FOR SPECTRAL ANALYSIS. INPUT IS 
C OF DIFFERENT AMPLITUDE SINUSOIDS AT THE 
C DISCRETE FREQUENCIES OF THE DFT. 
C 
C PRECISION - SINGLE 
C 
C REQ'D ROUTINES 
C - REALFT - COMPUTES THE FOURIER TRANSFORM 
C OF A REAL SEQUENCE. FROM NUMERICAL RECIPES 
C GASDEV - GAUSSIAN RANDOM NUMBER GENERATOR. 
C FROM NUMERICAL RECIPES 
C 
C PROGRAMMER - J. ERIC DUNN 
C DEPT OF ELECTRICAL AND COMPUTER ENGINEERING 
C IOWA STATE UNIVERSITY (GO CLONES!) 
C AMES, IOWA 50011 
C (515)294-3966 
C 
C LAST REVISION 8/23/90 
C *********************************************************** 
C 

REAL X(512),PFA(5),S(512) 
OPEN(UNIT=10,FILE=•PWRSAMP.DAT') 

C USE 4 DIFFERENT PROBABILITIES OF FALSE ALARM 
PFA(1)=0.01 
PFA(2)=0.001 
PFA(3)=0.0001 
PFA(4)=0.00001 

ARG=0.122718463 

DO 2 K=l,4 
C ENERGY DETECTION THRESHOLD 

ETA = -0.25 * LOG(PFA(K)) 
C SNR IN DBS 

DO 3 AMP=0,2,0.25 
C CALCULATE AMPLITUDE 

FACTOR= 10**AMP 
C DO MONTE-CARLO SIMULATION 

DO 10 1=1,2500 
C GENERATE THE SEQUENCE 

DO 20 J=l,512 
20 X(J) = FACTOR*(0.001*SIN(ARG*J)+ 
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& 0.002*SIN(ARG*3*J)+ 
& 0.003*SIN(5*ARG*J) + 
& 0.004*SIN(7*ARG*J) + 
& 0.005*SIN(9*ARG*J) + 
& 0.006*SIN(11*ARG*J) + 
& 0.008*SIN(13*ARG*J)) + 
& 0.50 * GASDEV(IDUM) 

C COMPUTE THE FOURIR TRANSFORM 
CALL REALFT(X,256,1) 

C CALCULATE THE PERIODOGRAM TEST VALUES 
T1=(X(21)**2+X(22)**2)/512 
T2=(X(61)**2+X(62)**2)/512 
T3=(X(101)**2+X(102)**2)/512 
T4=(X(141)**2+X(142)**2)/512 
T5=(X(181)**2+X(1822)**2)/512 
T6=(X(221)**2+X(222)**2)/512 
T7=(X(261)**2+X(262)**2)/512 

C T8 IS NOISE ONLY. COMPARE WITH THEORETICAL PFA 
T8=(X(301)**2+X(302)**2)/512 

C COMPARE WITH THE ENERGY DETECTION THRESHOLD 
IF (Tl.GT.ETA) P1=P1+1 
IF (T2.GT.ETA) P2=P2+1 
IF (T3.GT.ETA) P3=P3+1 
IF (T4.GT.ETA) P4=P4+1 
IF (T5.GT.ETA) P5=P5+1 
IF (T6.GT.ETA) P6=P6+1 
IF (T7.GT.ETA) P7=P7+1 
IF (T8.GT.ETA) P8=P8+1 

10 CONTINUE 
C OUTPUT THE SNR AND THE PROBABILITY OF DETECTION 

WRITE(*,*)FACTOR*0.001,0.0004*P1 
WRITE(*,*)FACTOR*0.002,0.0004*P2 
WRITE(*,*)FACTOR*0.003,0.0004*P3 
WRITE(*,*)FACTOR*0.004,0.0004*P4 
WRITE(*,*)FACTOR*0.005,0.0004*P5 
WRITE(*,*)FACTOR*0.006,0.0004*P6 
WRITE(*,*)FACTOR*0.008,0.0004*P7 
WRITE(*,*)0,0.0004*P8 

C PREPARE FOR NEXT SIMULATION WITH DIFFERENT PFA 
P1=0 
P2=0 
P3=0 
P4=0 
P5=0 
P6=0 
P7=0 
P8=0 

3 CONTINUE 
WRITE(*,*) 
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STOP 
END 
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XI. APPENDIX B: NCENT.FOR 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

** NCENT.FOR ****************************************** 

FUNCTION - PROBABILITY OF DETECTION FROM THE NON-
CENTRAL CHI-SQUARE DIST EVALUATED AT THE 
SNR'S USED IN DETECT.FOR 

PRECISION - SINGLE 

REQ'D ROUTINES 
- BESSIO,QROMB NUMERICAL RECIPES 

PROGRAMMER - J. ERIC DUNN 
DEPT OF ELECTRICAL ENGINEERING 
IOWA STATE UNIVERSITY 
AMES, IOWA 50011 
(515)294-5174 

LATEST REVISION 9/7/90 
******************************************************* 

EXTERNAL FOFQ 

COMMON RLAMBDA 
REAL X(63),N0 
DATA X/0.001,0.001778,0.002000,0.003,0.003162, 

& 0.003556,0.004000,0.004999,0.005334,0.005623, 
& 0.006000,0.006324,0.007113,0.008000,0.008891, 
& 0.009486,0.010000,0.010669,0.011246,0.012649, 
& 0.014226,0.015811,0.016870,0.017782,0.018973, 
& 0.020000,0.022493,0.025298,0.028117,0.030000, 
& 0.031622,0.033740,0.035565,0.040000,0.044987, 
& 0.049999,0.053348,0.056234,0.060000,0.063245, 
& 0.071131,0.080000,0.088913,0.094868,0.1, 
& 0.106696,0.112468,0.126491,0.142262,0.158113, 
& 0.168702,0.189736,0.2,0.224936,0.252982, 
& 0.281170,0.3,0.337404,0.4,0.449873,0.5, 
& 0.6,0.800000/ 

WRITE(*,*)'PROBABILITY OF FALSE ALARM?' 
READ(*,*)PFA 

C SINGLE SIDED NOISE SPECTRAL DENSITY. 
NO = 0.50 

C CALCULATE THE EERGY DETECTION THRESHOLD FOR A UNITY TIME 
C BANDWIDTH PRODUCT RADIOMETER, NOISE VARIANCE IS 0.25, 
C THE SINGLE-SIDED BANDWIDTH IS ASSUMED TO BE 1. 

ETA = -2.0 * LOG (PFA) 



www.manaraa.com

121 

DO 10 1=1,63 
C BIN BANDWIDTH = 1 / 512 
C TIME =512 SECONDS 
C TOTAL SIGNAL ENERGY IN THIS TIME: 

ES = 512*X(I)*X(I)/2 
RLAMBDA = 2 * ES / NO 

C INTEGRATION OF NONCENTRAL CHI-SQUARE DISTRIBUTION W. 2 
DEGREES 
C OF FREEDOM USING ROUTINE FROM NUMERICAL RECIPES. 

CALL QROMB(FOFQ,ETA,100. ,SS) 
WRITE(*,*)SS 

10 CONTINUE 
STOP 
END 

REAL FUNCTION FOFQ(Q) 
COMMON RLAMBDA 
FOFQ = 0.5 * EXP(-0.5*(Q+RLAMBDA))* 

& BESSIO(SQRT(Q*RLAMBDA)) 
RETURN 
END 
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XII. APPENDIX C: CLASSIH.FOR 

C**** CLASSIM.FOR ******************************************* 
C 
C FUNCTION - TEST TWO PARAMETER CLASSIFIER. THE FIRST 
C PARAMETER HAS A GAUSSIAN DISTRIBUTION 
C WITH KNOWN MEAN AND VARIANCE. THE 
C SECOND PARAMETER IS EMISSION FREQUENCY, 
C WITH ORDER STATISTICS USED TO ESTIMATE 
C THE HOPPING SPANS OF EACH FH SIGNAL. 
C 
C PRECISION - SINGLE 
C 
C REQ'D ROUTINES- RANI, GASDEV FROM NUMERICAL RECIPES 
C FCOST 
C 
C PROGRAMMER - J. ERIC DUNN 
C ELECTRICAL AND COMPUTER ENGINEERING 
C IOWA STATE UNIVERSITY 
C AMES, IOWA 50011 
C (515)294-5174 
C 
C LATEST REVISION - 10/02/90 
C 
************************************************************** 
C 

PI = 3.14159265 
NTRIALS=100 
GDIST=1 

C NUMBER OF OBSERVED EMISSIONS USED TO INITIALIZE THE HOPPING 
C SPAN ESTIMATES 

READ(99,*)NINIT 
C CONSTANT FOR THE GAUSSIAN PDF'S. 

GCONST = 1.0 / SQRT (2 * PI) 

C D = NORMALIZED DISTANCE BETWEEN CENTER OF HOPPING SPANS 
C (SPAN WIDTH = 1) 

DO 10 D=0,2,0.1 

C NTRIALS =THE NUMBER OF TIMES THE CLASSIFICATION ALGORITHM IS 
C TESTED. 

DO 15 1=1,NTRIALS 

C THE FIRST 100 EMISSIONS FROM EACH FH SIGNAL ARE GENERATED 
C FOR EACH TRIAL 

DO 20 N=l,100 
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C XI,X2 = GAUSSIAN RV'S FROM FIRST AND SECOND FH SIGNALS 
C RESPECTIVELY. 2*GDIST STD DEVIATION SEPARATION 
C BETWEEN MEANS, P(ERROR)=0.159 FOR A SINGLE EMISSION 
C CLASSIFYER 

X1=GASDEV(IDUM)+GDIST 
X2=GASDEV(IDUM)-GDIST 

C U1,U2 = UNIFORM RV'S REPRESENTING HOPPING FREQUENCY 
U1=RAN1(IDUM)+0.5*D 
U2=RAN1(IDUM)-0.5*D 

IF (N.EQ.l) THEN 

C FIRST OBSERVATION. INITIALIZE SPAN ESTIMATES. 
C ND1,ND2 ARE THE NUMBER OF EMISSIONS (DWELL) OBSERVED FROM 
C EACH FH SIGNAL 

ND1=NINIT 
ND2=NINIT 
A1=0.5*D 
B1=1+0.5*D 
A2=-0.5*D 
B2=1-0.5*D 

C GENERATE HOPPING SAN ESTIMATES USING THE INVERSE CDF METHOD 
AlHAT = B1-(B1-A1)*(1.0 - RANI(IDUM))**(1.0/NDl) 
BIHAT = A1+(B1-A1)*RAN1(IDUM)**(1.0/ND1) 
A2HAT = B2-(B2-A2)*(1.0 - RANI(IDUM))**(1.0/ND2) 
B2HAT = A2 + (B2-A2) * RANI(IDUM) ** (1.0 / ND2) 
A1=A1HAT 
B1=B1HAT 
A2=A2HAT 
B2=B2HAT 

ENDIF 

C GCIJ = SIGNAL MATCH PROBABILITY FOR ASSIGNING R.V. FROM THE 
C I-TH PROCESS TO THE J-TH PROCESS USING GAUSSIAN DATA 

GC11= GCONST * EXP(-0.5*(X1-GDIST)**2) 
GC12= GCONST * EXP(-0.5*(Xl+GDIST)**2) 
GC21= GCONST * EXP(-0.5*(X2-GDIST)**2) 
GC22= GCONST * EXP(-0.5*(X2+GDIST)**2) 

C FCIJ = SIGNAL MATCH PROBABILITY USING EMISSION FREQUENCY 
CALL FCOST(FCll,FC12,U1,A1,A2,B1,B2,NDl,ND2) 
CALL FCOST(FC21,Fd22,U2,Al,A2,Bl,B2,NDl,ND2) 

C TOTAL COST; 
Cll = GC11*FC11 
C12 = GC12*FC12 
C21 = GC21*FC21 
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C22 = GC22*FC22 
T1 = Cll * C22 
T2 = C12 * C21 

C TWO EMISSION CLASSIFICATION ALGORITHM 
IF (T1.GT.T2) THEN 

C UPDATE ORDER STATISTICS BASED ON THE CLASSIFICATION DECISION 
C THIS BRANCH REPRESENTS A CORRECT CLASSIFICATION DECISION 

A1 = MIN(A1,U1) 
B1 = MAX(B1,U1) 
NDl = ND1+ 1 
A2 = MIN(A2,U2) 
B2 = MAX(B2,U2) 
ND2 = ND2 + 1 

ELSE 

C THIS BRANCH REPRESENTS AN INCORRECT CLASSIFICATION DECISION 
C TWO CLASSIFICATION ERRORS HAVE BEEN MADE 

A2 = MIN(A2,U1) 
B2 = MAX(B2,U1) 
ND2 = ND2 + 1 
PERR = PERR+1 
A1 = MIN(A1,U2) 
B1 = MAX(B1,U2) 
NDl = NDl + 1 
PERR = PERR+1 

ENDIF 

20 CONTINUE 
TP = TP + PERR/(2*100) 
PERR = 0 

15 CONTINUE 

C OUTPUT THE RELATIVE DISTANCE BETWEEN PROCESS, AND THE 
C AVERAGE PROBABILITY OF ERROR 

WRITE(15,*)TP/NTRIALS 
TP=0.0 

10 CONTINUE 
STOP 
END 

SUBROUTINE FCOST(FCl,FC2,U,A1,A2,B1,B2,NHl,NH2) 

BC1=MAX(U,B1) 
AC1=MIN(U,A1) 
NE=NH1 
CBW = BCl - ACl 
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PI = NE*(NE-1)*((Bl-Al)/CBW)**(NE-2) 
PI = PI / CBW**3 

BC2=MAX(U,B2) 
AC2=MIN(U,A2) 
NE=NH2 
CBW = BC2 - AC2 

P2 = NE*(NE-1)*((B2-A2)/CBW)**(NE-2) 
P2 = P2 / CBW**3 

TP = PI + P2 
FCl = PI / TP 
FC2 = P2 / TP 

RETURN 
END 
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